• 제목/요약/키워드: passive control systems

검색결과 464건 처리시간 0.027초

갱내 황산염환원시설(IASRS)을 이용한 산성광산배수 처리에 관한 연구

  • 지상우;이상훈;유상희;김재욱;김선준
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.184-187
    • /
    • 2003
  • To solve the problems of operating passive mine drainage treatment systems, the In Adit Sulfate Reducing System(IASRS) was suggested. By placing the SAPS inside the adit, the condition of constant temperature of 10~15$^{\circ}C$ can be maintained. The experiments using the models made up by four sections showd good efficiencies in pH control and metal removal rate, but showed still low sulfate removal rate of about 30% with high COB in the begining of the operation.

  • PDF

슬라이딩 관측기를 갖는 가변구조제어기에 의한 도립진자의 운동제어 (A Motion Control of a Two Degree of Freedom Inverted Pendulum with Passive Joint using Discrete-time Sliding Observer Based VSS Controller)

  • 서용석;유완식;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.468-471
    • /
    • 1994
  • This paper presents the digital implementation of an optimal and robust VSS controller with sliding observer. Firstly, a discrete-time VSS control law which enables the system state to move into a sliding sector where the closed-loop system is stable is designed. Then optimal control theory is used to design an optimal sliding sector. Secondly, a sliding observer which provide robust state estimation against model-plant mismatches due to parameter uncertainties is designed for the sampled-data multivariable systems. Finally, modified sliding observer which effectively reduce chattering of state variables in state estimation was proposed. The proposed scheme was applied 10 a two degree of freedom inverted pendulum with passive joint to verify robust motion control. Computer simulation results confirm the viability of the proposed observer-based controller.

  • PDF

Optimal distribution of the cable tensions and structural vibration control of the cable-cabin flexible structure

  • Qiu, Y.Y.;Duan, B.Y.;Wei, Q.;Nan, R.D.;Peng, B.
    • Structural Engineering and Mechanics
    • /
    • 제14권1호
    • /
    • pp.39-56
    • /
    • 2002
  • In order to trace a target in deep sky, a feed cabin 20 tons in weight used for a large radio telescope is drawn with six cables. To realize a smooth tracing all the time, optimal distribution of the cable tensions is explored. A set of cable-clog systems is utilized to control the wind-induced vibration of the cable-cabin structure. This is an attempt to apply the passive structural control strategy in the area of radio astronomy. Simulations of wind-induced vibration of the structure in both time and frequency domains offer a valuable reference for construction of the next generation large radio telescope.

긴급차량 우선신호 센터제어 알고리즘 개발 (A Passive Traffic Signal Priority Control Algorithm for Emergency Vehicles)

  • 이종우;이숭봉;이진수;엄기훈;이영인
    • 한국ITS학회 논문지
    • /
    • 제16권3호
    • /
    • pp.110-119
    • /
    • 2017
  • 본 연구에서는 긴급차량 우선신호 센터제어 알고리즘을 개발하였다. 센터제어는 긴급차량 출동 요청이 접수되면 긴급차량 경로의 각 교차로에 대하여 신호시간을 산출 및 적용한다. 긴급차량 출발 이전에 신호시간을 제어하기 때문에 대기차량을 보다 효과적으로 소거할 수 있다. 대부분의 기존 연구에서는 긴급차량 도착 시점에 부도로의 녹색현시를 종료하는 preemption 방식을 적용하였다. 본 연구에서는 현시순서를 변경하지 않기 위해 Green Extension과 Early Green만을 적용하였고 각 현시별 최소녹색시간을 보장하였다. 시뮬레이션 결과, 신호를 제어하였을 때 긴급차량의 지체는 신호를 제어하지 않았을 때에 비해 감소하는 것으로 나타났다. 향후 본 연구에서 제시한 센터제어 알고리즘에 현장제어를 결합하여 긴급차량의 실시간 위치와 교차로 통과 여부를 반영하면 긴급차량의 지체를 추가로 감소시킬 수 있을 것으로 기대된다.

INS/GPS 결합 시스템의 안정도 및 성능 분석 (Analysis for stability and performance of INS/GPS integration system)

  • 양철관;심덕선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.445-447
    • /
    • 1998
  • This paper shows simulation results for stability and performance of two INS/GPS integration systems. First, the code tracking error of GPS receiver is analyzed by spectrum analysis and simulated for the tight and loose INS/GPS integrations. Next, stability of the integrated systems are simulated using root locus method. As loop filter in the GPS receiver, passive filter and active filter are used and compared.

  • PDF

편심배치방식 자기부상 제어시스템의 2차 현가에 대한 동특성 해석 (Dynamic Performance Analysis for Secondary Suspension of Maglev Control Systems with a Combined Lift and Guidance)

  • 김종식
    • 한국정밀공학회지
    • /
    • 제9권1호
    • /
    • pp.53-65
    • /
    • 1992
  • For improving the performance of maglev systems with a combined lift and guidance, it is suggested that the multivariable control systems and a secondary suspension should be added. The former is required to reject both track irregularities in vertical disturbances and wind gusts in lateral disturbances, and the latter to guarantee passengers against an unsatisfied criteria in ride quality. In this paper, bond graph model for the study of nonlinear dynamics of maglev systems with a combined lift and guidance is presented briefly. And, the secondary suspension is analyzed to understand the role of stiffness and damping factors in passive devices. Finally, LQG/LTR mulitivariable control systems are designed for the overall maglev systems with and without secondary suspension, and then the system performances in these two cases are evaluated.

  • PDF

환자와 로봇의 모델 불확도를 고려한 상지재활로봇의 채터링 없는 슬라이딩 모드 제어 (Chattering Free Sliding Mode Control of Upper-limb Rehabilitation Robot with Handling Subject and Model Uncertainties)

  • 압둘 마난 칸;윤덕원;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.421-426
    • /
    • 2015
  • Need to develop human body's posture supervised robots, gave the push to researchers to think over dexterous design of exoskeleton robots. It requires to develop quantitative techniques to assess human motor function and generate the command to assist in compliance with complex human motion. Upper limb rehabilitation robots, are one of those robots. These robots are used for the rehabilitation of patients having movement disorder due to spinal or brain injuries. One aspect that must be fulfilled by these robots, is to cope with uncertainties due to different patients, without significantly degrading the performance. In this paper, we propose chattering free sliding mode control technique for this purpose. This control technique is not only able to handle matched uncertainties due to different patients but also for unmatched as well. Using this technique, patients feel active assistance as they deviate from the desired trajectory. Proposed methodology is implemented on seven degrees of freedom (DOF) upper limb rehabilitation robot. In this robot, shoulder and elbow joints are powered by electric motors while rest of the joints are kept passive. Due to these active joints, robot is able to move in sagittal plane only while abduction and adduction motion in shoulder joint is kept passive. Exoskeleton performance is evaluated experimentally by a neurologically intact subjects while varying the mass properties. Results show effectiveness of proposed control methodology for the given scenario even having 20 % uncertain parameters in system modeling.

A study for levitation and guidance control system design

  • Kim, Kook-Hun;Kim, Jong-Moon;Cho, Chang-Hee;Kim, Choon-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.532-538
    • /
    • 1992
  • Control system design for attraction type Maglev system is dealt in this paper. Characteristics of levitation and guidance control is explained and a kind of active guidance controller performance is compared with passive guidance control. Also, a method of using absolute and relative information simultaneously is adopted for levitation control. All the methods studied performed very well in the experiments as well as simulation.

  • PDF

Developing a smart structure using integrated DDA/ISMP and semi-active variable stiffness device

  • Karami, Kaveh;Nagarajaiah, Satish;Amini, Fereidoun
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.955-982
    • /
    • 2016
  • Recent studies integrating vibration control and structural health monitoring (SHM) use control devices and control algorithms to enable system identification and damage detection. In this study real-time SHM is used to enhance structural vibration control and reduce damage. A newly proposed control algorithm, including integrated real-time SHM and semi-active control strategy, is presented to mitigate both damage and seismic response of the main structure under strong seismic ground motion. The semi-active independently variable stiffness (SAIVS) device is used as semi-active control device in this investigation. The proper stiffness of SAIVS device is obtained using a new developed semi-active control algorithm based on real-time damage tracking of structure by damage detection algorithm based on identified system Markov parameters (DDA/ISMP) method. A three bay five story steel braced frame structure, which is equipped with one SAIVS device at each story, is employed to illustrate the efficiency of the proposed algorithm. The obtained results show that the proposed control algorithm could significantly decrease damage in most parts of the structure. Also, the dynamic response of the structure is effectively reduced by using the proposed control algorithm during four strong earthquakes. In comparison to passive on and off cases, the results demonstrate that the performance of the proposed control algorithm in decreasing both damage and dynamic responses of structure is significantly enhanced than the passive cases. Furthermore, from the energy consumption point of view the maximum and the cumulative control force in the proposed control algorithm is less than the passive-on case, considerably.

고속 롤투롤 시스템의 펜듈럼 덴서를 사용한 장력계어기 매칭 설계 (Matching Design of a Tension Controller with Pendulum Dancer in Roll-to-Roll Systems)

  • 강현규;신기현
    • 한국정밀공학회지
    • /
    • 제26권6호
    • /
    • pp.81-89
    • /
    • 2009
  • Dancer systems are typical equipment for attenuation of tension disturbances. Lately, demands for high speed roll-to-roll machines are rising but it is prior to attenuate the tension variation on the web entering into the printing zone to achieve the speed increment. Maintaining a constant tension before the first printing cylinder is the key of high speed, high quality printing. Dancer has been researched in two ways, whether it is controlled or not. The first one is active dancer and the other one is passive dancer. In the active dancer, a position of idle roll of dancer is measured and the roll is moved by external hydraulic cylinder to control tension disturbances. While the passive one composed with spring, damper and idle roll has no external actuator to position the idle roll. The tension disturbance causes movement of dancer roll and the displacement of the roll regulates the tension variation. On the other hand a composite type of dancer is applied for roll-to-roll printing machines. It has same apparatus as passive dancer. The displacement of roll is measured and front(or rear) driven roller is controlled to position the roll. In this paper, it is presented an analysis of pendulum dancer including position feedback PI control and logic for PI gain tuning in roll-to-roll machines. Pole-zero map and root locus with varying system parameters gives a design method for control of the dancer.