• Title/Summary/Keyword: passive continental margin

Search Result 8, Processing Time 0.03 seconds

Architecture of Continental Rifting in the South Korea Plateou: Constraints to the Evolution of the Eastern Korea Margin and the Opening of the East Sea (Japan Sea)

  • Kim, Han-Joon;Jou, Hyeong-Tae;Yoo, Hai-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.189-197
    • /
    • 2006
  • The Korea Plateau is a continental fragment rifted and partially segmented from the Korean Peninsulaat the initial stage of the opening of the East Sea (Japan Sea). We interpreted marine seismic profiles from the South Korea Plateau in conjunction with swath bathymetric to investigate processes of con-tjnental rifting and separation of the southwestern Japan Arc. The SouU-i Korea Plateau preserves funda-mental elements of rift architecture comprising a seaward succession of a rift basin and an uplifted rift flank passing into the slope, typical of a passive continental margin. Two distinguished rift basins (Onnuri and Bandal Basins) in the South Korea Plateau are bounded by major synthetic and smaller antithetic faults, creating wide and symmetric profiles. The large-offset border fault zones of these basins have convex dip slopes and demonstrate a zig-zag arrangement along strike. Rifting was primarily controlled by normal faulting resulting from extension orthogonal to the inferred line of breakup along the base ofthe slope rather U-ian strike-slip deformation. Two extension direcdons for rifdng are recog-nized; U-ie Onnuri Basin was rifted in U-ie EW direction; U-ie Bandal Basin in U-ie EW and NW-SE directions, suggesting two rift stages. We interpret that the E-W direction represents initial rifting at the inner margin; while the Japan Basin widened, rifting propagated repeatedly from the Japan Basin to the southeast toward the Korean margin but could not penetrate the strong continental lithosphere of the Korean Shield and changed direction to the south, resulting in E-W extension to create the rift basins at the Korean margin. The Hupo Basin to the south of the Korea Plateau is estimated to have formed in this process. The NW-SE direction probably represents the direction of rifting orthogonal to the inferred line of breakup along the base of the slope of the South Korea Plateau; after breakup the southwestern Japan Arc separated in the SE direction, indicating a response to tensional tectonics associated with the subduction of the Pacific Plate in the NE direction. We suggest that structural evolution of the eastern Korean margin can be explained by the processes occurring at the passive continental margin.

  • PDF

Evolution of the eastern margin of Korea: constraints on the opening of the East Sea (Japan Sea)

  • Kim, Han-Joon;Jou, Hyeong-Tae;Suk, Bong-Chool
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.73-83
    • /
    • 2007
  • We interpreted marine seismic profiles in conjunction with swath bathymetric and magnetic data to investigate rifting to breakup processes at the eastern Korean margin that led to the separation of the southwestern Japan Arc. Analysis of rift fault patterns suggests that rifting at the Korean margin was primarily controlled by normal faulting resulting from extension rather than strike-slip deformation. Two extension directions of E-W and NW-SE for rifting are recognized. We interpret that the E-W direction represents initial rifting at the inner margin and the NW-SE direction probably represents the extension in response to tensional tectonics associated with the subduction of the Pacific Plate in the NW direction. No significant volcanism was involved in rifting. In contrast, the inception of sea floor spreading documents a pronounced volcanic phase which appears to reflect asthenospheric upwelling as well as rift-induced convection particularly in the narrow southern margin. We suggest that structural and igneous evolution of the Korean margin, although it is in a back-arc setting, can be explained by the processes occurring at the passive continental margin with magmatism influenced by asthenospheric upwelling.

  • PDF

Structural Evolution of the Eastern Margin of Korea: Implications for the Opening of the East Sea (Japan Sea) (한국 동쪽 대륙주변부의 구조적 진화와 동해의 형성)

  • Kim Han-Joon;Jou Hyeong-Tae;Lee Gwang-Hoon;Yoo Hai-Soo;Park Gun-Tae
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.235-253
    • /
    • 2006
  • We interpreted marine seismic profiles in conjunction with swath bathymetric and magnetic data to investigate rifting to breakup processes at the Korean margin leading to the separation of the Japan Arc. The Korean margin is rimmed by fundamental elements of rift architecture comprizing a seaward succession of a rift basin and an uplifted rift flank passing into the slope, typical of a passive continental margin. In the northern part, rifting occurred in the Korea Plateau, a continental fragment extended and partially segmented from the Korean Peninsula, that provided a relatively broader zone of extension resulting in a number of rifts. Two distinguished rift basins (Onnuri and Bandal Basins) in the Korea Plateau we bounded by major synthetic and smaller antithetic faults, creating wide and symmetric profiles. The large-offset border fault zones of these basins have convex dip slopes and demonstrate a zig-zag arrangement along strike. In contrast, the southern margin is engraved along its length with a single narrow rift basin (Hupo Basin) that is an elongated asymmetric half-graben. Rifting at the Korean margin was primarily controlled by normal faulting resulting from extension in the west and southeast directions orthogonal to the inferred line of breakup along the base of the slope rather than strike-slip deformation. Although rifting involved no significant volcanism, the inception of sea floor spreading documents a pronounced volcanic phase which seems to reflect slab-induced asthenospheric upwelling as well as rift-induced convection particularly in the narrow southern margin. We suggest that structural and igneous evolution of the Korean margin can be explained by the processes occurring at the passive continental margin with magmatism intensified by asthenospheric upwelling in a back-arc setting.

Geochemistry of cordierite-bearing motasedimentary rocks, northern Yeongnam Massif: implications for provenance and tectonic setting

  • Kim, Jeongmin;Moonsup Cho
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.54-54
    • /
    • 2003
  • The metasedimentary rocks together with various granitoids are the main constituents in Taebaeksan gneiss complex, northern Yeongnam Massif. Chemical compositions of sedimentary rocks may reflect the nature of the provenance and could be crucial for understanding the evolution of early continental crust. Previous workers have suggested that the provenance and tectonic studies based on the geochemistry of sediments are applicable to the Precambrian samples. In this study we analyzed the major, trace and REE elements of metasedimentary rocks to understand their provenance and tectonic setting during sedimentation. The overall geochemical characteristics of metasedimentary rocks are similar to those of average shale of the post-Archean. Major element chemistry indicates mature and sorted nature of the sediments. The degree of weathering in the source rocks the is not uniform, as inferred from a large scatter in chemical indices of weathering (CIW). The immobile trace elements such as Th, Sc, and REE can be used to discriminate various sedimentary processes. The Th/sc ratios (0.9 - 4.4) are larger than those of the upper crust and average shale, suggesting that the felsic source predominates. The contents of Ni and Cr and the variations in the ratio of compatible to incompatible elements are similar to the average post-Archean shale. Uniform chondrite-normalized REE pattern with the LREE enrichment (LaN/SmN = 4.9 ${\pm}$ 0.4) and slight negative Eu anomalies (Eu/Eu$\^$*/ = 0.7 ${\pm}$ 0.1) also support this observation. The presence of negative Eu anomaly indicates that intracrustal igneous processes involving plagioclase separation have affected the provenance rocks. The LREE enrichment implies the major role of felsic rocks in source rocks. The eNd (1.9 Ga) values of metasediment rocks vary from 9.4 to 6.7, corresponding to TDM of 2.9 - 2.7 Ga. On the other hand, the 147Sm/144Nd ratios are 0.1079 - 0.1101, corresponding to typical tettigenous sediments. The geochemical features of metasedimentary rocks such as high abundances of large ion lithophile elements, high ratios of Th/Sc and La/Sm, commonly high Th/U ratios, negative Eu anomalies, and negative eNd, suggest a provenance consisting virtually entirely of recycled upper continental crust in passive margin environment. Tectonic discrimination diagrams based upon major element compositions also support this suggestion. In conjunction with igneous activity and metamorphism in the convergent margin setting at 1.8 - 1. 9 Ga, the transition from passive margin to active margin characterize the Paleoproterozoic crustal evolution in northern Yeongnam Massif.

  • PDF

High Resolution Gravity Mapping and Its Interpretation from both Shipborne and Satellite Gravity Data in the Ulleung Basin (울릉분지에서의 선상중력과 위성중력 통합에 의한 중력 해상도 향상 및 해석)

  • Park, Chan Hong;Kim, Jeong U;Heo, Sik;Won, Jung Seon;Seok, Bong Chul;Yu, Hae Su
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.27-38
    • /
    • 1999
  • The errors between track segments or at the cross-over points of shipborne gravity were successfully reduced by applying a cross-over error adjustment technique using satellite gravity. The integration of shipborne and satellite altimeter-implied free-air gravity anomalies after the cross-over error adjustment resulted in a high resolution gravity map which contains both short and long wavelength components. The successful adjustment of the cross-over errors in the shipborne gravity using the satellite gravity suggests that the shipborne gravity can be combined with the satellite anomalies characterized by a stable and long wavelength component. The resulting free-air anomaly map is evenly harmonized with both short and long wavelength anomalies. Thus the corrected anomaly map can be better used for the geological interpretation. Free-air anomalies with more than 140 mGal in total variations generally correspond to the seafloor topographic changes in their regional patterns. A series of gravity highs are aligned from the Korea Plateau to the Oki Island, which are interpreted to be caused by seamounts or volcanic topographies. The gravity minima along the western and southern shelf edge are associated not only with the local basement morphology and thick sediment fill at the continental margin, but also possibly with the crustal edge effect known for passive continental margins. Series of NE-trending linear anomalies are possibly caused by a swarm of volcanic intrusions followed the initial opening of the Ulleung Basin. The linear high anomalies in the Ulleung Plateau are terminated by the straightly NNW-trending anomalies with a sharp gradient in its western boundary which indicates a fault-line scarp. The opposite side adjoined with the fault-line scarp shows no correlation with the fault-line scarp in geometry indicating that the block might be horizontally slided from the north. A gravity high in contrast to the deepening in seafloor toward the northeastern central Ulleung Basin is probably responsible for the thin crust and shallow seated mantle. The gravity minima along the western and southern shelf edge are associated not only with the local basement morphology and thick sediment fill at the continental margin, but also possibly with the crustal edge effect known for passive continental margins. Series of NE-trending linear anomalies are possibly caused by a swarm of volcanic intrusions followed the initial opening of the Ulleung Basin. The linear high anomalies in the Ulleung Plateau are terminated by the straightly NNW-trending anomalies with a sharp gradient in its western boundary which indicates a fault-line scarp. The opposite side adjoined with the fault-line scarp shows no correlation with the fault-line scarp in geometry indicating that the block might be horizontally slided from the north. A gravity high in contrast to the deepening in seafloor toward the northeastern central Ulleung Basin is probably suggestive of a thin crust and shallow seated mantle.

  • PDF

선캠브리아 홍제사 화강암의 진화과정(한국 북동부지역의 원생대의 화성활동과 변성작용)

  • 김정민;조문섭
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.76-93
    • /
    • 1994
  • The Precambrian Hongjesa granite is lithologically zoned from biotite granite in central part to biotite-muscovite granite towards the margin. The X_{Fe}$ (=Fe/(Fe+Mg)) value and the aluminum saturation index of biotite systematically vary as a function of mineral assemblage, and are positively related with those of bulk rock. This relationship as well as the lithological zoning are attributed to the fractional crystallization of the Hongjesa granitic magma. The trace element data corroborate that biotite-muscovite granite is more fractionated than biotite granite. The evolution of the Hongjesa granite is elucidated by using the AFM liquidus topology, where A=$Al_2O_3-CaO-Na_2O-K_2O$; F=FeO+MnO; and M=MgO. At an early magmatic stage where biotite is the only ferromagnesian mineral to crystallize, the X_{Fe}$ value and the alumina content of granitic magma continuously increase.. Muscovite subsequently crystallizes with biotite along the biotitemuscovite cotectic curve where biotite-muscovite granite forms. Local enrichments in Mn and B further crystallize garnet and tourmaline, respectively. The unique zonal pattern characterized by the occurrence of the evolved biotite-muscovite granite at the margin may be accounted for by the passive stoping during the emplacement of the Hongjesa granite. This emplacement may have occurred in continental collision environment, according to the tectonic discrimination diagram using major element chemistry.

  • PDF

A Gravity Characteristic of Svalbard Archipelago in Arctic by Using ArcGP Data (ArcGP 자료를 이용한 북극 스발바드 군도의 중력특성)

  • Yu Sang Hoon;Kim Chang Hwan;Hwang Jong Sun;Min Kyung Duck
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.255-260
    • /
    • 2005
  • A Gravity characteristic of Svalbard archipelago in Arctic was studied by using ArcGP data. There are situated the Dasan science station. After bouguer correction, an edge effect of free-air anomaly, which is similar to topography, are not shown at passive continent margin, and after terrain correction with GTOPO30 data, gravity anomaly increases from continent to marine. that is deep connected with rise of Moho discontinuity. The correlation of topography and free-air anomaly shows that the isostasy of continent attains a little less than marine. After filtering, the residual anomaly are shown high and low anomalies related to fracture zone in continent and base depression or thick sedimentary layer in continental slope, marine.

  • PDF

Mineralogy and Geochemistry of Shale Deposits in the Lower Anambra Basin, Nigeria: Implication for Provenance, Tectonic Setting and Depositional Environment

  • Olugbenga Okunlola;Agonsi Udodirim Lydia;Aliyu Ohiani Umaru;Raymond Webrah Kazapoe;Olusegun G. Olisa
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.799-816
    • /
    • 2023
  • Mineralogical and geochemical studies of shales within the Lower Anambra Basin was conducted to unravel the depositional environment, provenance, maturity, paleo-weathering conditions, and tectonic settings. Mineralogical studies conducted using X-ray diffraction analysis revealed that the samples were composed of kaolinite, montmorillonite, chlorite, and illite. KaolinIite is the dominant mineral, constituting approximately 41.5% of the bulk composition, whereas the non-clay minerals are quartz, ilmenite, and sillimanite. Geochemical analysis showed a predominance of SiO2, Al2O3, and Fe2O3 contents of the shale samples with mean values of 52.29%, 14.09%, and 6.15% for Imo Shale (IS); 52.31%, 16.70%, and 7.39% for Mamu Shale (MS); 43.21%, 21.33%, and 10.36% for Enugu Shale (ES); 53.35%, 15.64%, and 7.17% for Nkporo Shale (NS); and 51.24%, 17.25%, and 7.78% for Agwu Shale (AS). However, the shales were depleted in Na2O, MgO, K2O, MnO, TiO2, CaO, and P2O5. The trace element ratios of Ni/Co and Cu/Zn of the shale suggest an oxic depositional environment. The average SiO2 vs. Al2O3 ratio of the shales indicated textural maturity. Compared to the PAAS standard, the shales plot below the PAAS value of 0.85, suggesting a high degree of maturity and intensive chemical weathering, further confirmed on a CIA vs. PIA plot. On log (K2O/Na2O) against SiO2 and tectonic setting discriminant function diagrams, the shales plot mostly in the field of passive continental margin tectonic setting. The discriminant function diagrams as well as Al2O3/TiO2 ratio of the shales showed that they were derived from a mixed source (mafic and intermediate igneous rocks).