• 제목/요약/키워드: passive constraining leg

Search Result 3, Processing Time 0.015 seconds

Kinematic Analysis and Optimal Design of 2RPR-RP Parallel Manipulator (2RPR-RP 병렬 기구의 기구학 해석 및 최적설계)

  • Nam, Yun-Joo;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1509-1517
    • /
    • 2005
  • This paper presents the two degree-of-freedom(DOF) planar parallel mechanism called 2R$\underline{P}$R-RP manipulator, whose degree-of freedom is dependent on a passive constraining leg connecting the base and the platform. First, the kinematic analysis of the mechanism is performed analytically: the inverse and forward kinematic problems are solved in the closed font the practical workspace is systematically derived, and all of the singular configurations are examined. Then, in order to determine the geometric parameters and the operating limits of the actuators, the optimization of the mechanism is performed considering its dexterity and stiffness. Finally, the kinematic performances of the optimized mechanism are evaluated through comparing to the 5-bar parallel manipulator.

Optimal Kinematic Design of Planar Parallel Mechanisms: Application to 2RRR-RP Mechanism (평면형 병렬 기구의 기구학적 최적설계: 2RRR-RP기구에 적용)

  • Nam Yun-Joo;Lee Yuk-Hyung;Park Myeong-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.464-472
    • /
    • 2006
  • This paper presents the two degree-of-freedom (DOF) planar parallel mechanism, called the $2{\underline{R}}RR-RP$ manipulator, whose degree-of-freedom is dependent on an additional passive constraining leg connecting the base and the platform. First, the kinematic analysis of the mechanism is performed: the inverse and forward kinematic problems are analytically solved, the workspace is systematically derived, and all of the singular configurations are examined. Then, in order to determine the geometric parameters the optimization of the mechanism is performed considering its dexterity, stiffness, and space utilization. Finally, the kinematic performances of the optimized mechanism are evaluated through the comparison study to the conventional 5-bar parallel manipulator.

Kinematics and Optimization of 2-DOF Parallel Manipulator with Revolute Actuators and a Passive Leg

  • Nam Yun-Joo;Park Myeong-Kwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.828-839
    • /
    • 2006
  • In this paper, a 2-DOF planar parallel manipulator with two revolute actuators and one passive constraining leg. The kinematic analysis of the mechanism is analytically performed : the inverse and forward kinematics problems are solved in closed forms, the workspace is derived systematically, and the three kinds of singular configurations are round. The optimal design to determine the geometric parameters and the operating limits of the actuated legs is performed considering the kinematic manipulability and workspace size. These results of the paper show the effectiveness of the presented manipulator.