• Title/Summary/Keyword: partitioned matrix

Search Result 67, Processing Time 0.027 seconds

An efficient parallel solution algorithm on the linear second-order partial differential equations with large sparse matrix being based on the block cyclic reduction technique (Block Cyclic Reduction 기법에 의한 대형 Sparse Matrix 선형 2계편미분방정식의 효율적인 병렬 해 알고리즘)

  • 이병홍;김정선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.7
    • /
    • pp.553-564
    • /
    • 1990
  • The co-efficient matrix of linear second-order partial differential equations in the general form is partitioned with (n-1)x(n-1) submartices and is transformed into the block tridiagonal system. Then the cyclic odd-even reduction technique is applied to this system with the large-grain data granularity and the block cyclic reduction algorithm to solve unknown vectors of this system is created. But this block cyclic reduction technique is not suitable for the parallel processing system because of its parallelism chanigng at every computing stages. So a new algorithm for solving linear second-order partical differential equations is presentes by the block cyclic reduction technique which is modified in order to keep its parallelism constant, and to reduce gteatly its execution time. Both of these algoriths are compared and studied.

  • PDF

A Study on an Optimal Plant Design Collaboration System Using a Design Structure Matrix (Design Structure Matrix를 활용한 플랜트 설계의 최적 협업 체계에 관한 연구)

  • Yun, Jong Yi;Kim, Jeong Hwan;Kang, Sang Hyeok;Seo, Jong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.337-346
    • /
    • 2013
  • A design collaboration system for a plant project is a set of complicated multidisciplinary processes in which a large number of various engineering fields are involved. Each subsystem is related to each other as they depend on information that other subsystems create, which leads to inefficient design iterations. This study presents an optimal design collaboration system for a plant project using Design Structure Matrix (DSM). Data regarding design subsystems, parameters, etc. were obtained by expert surveys and workshops. An automatic analysis program for DSM was developed using Visual Basic Application and Matlab to provide a partitioned DSM. A case study was conducted on a furnace project; consequently, the optimal design collaboration system with five crucial iteration groups was derived.

Face Recognition using LDA Mixture Model (LDA 혼합 모형을 이용한 얼굴 인식)

  • Kim Hyun-Chul;Kim Daijin;Bang Sung-Yang
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.8
    • /
    • pp.789-794
    • /
    • 2005
  • LDA (Linear Discriminant Analysis) provides the projection that discriminates the data well, and shows a very good performance for face recognition. However, since LDA provides only one transformation matrix over whole data, it is not sufficient to discriminate the complex data consisting of many classes like honan faces. To overcome this weakness, we propose a new face recognition method, called LDA mixture model, that the set of alf classes are partitioned into several clusters and we get a transformation matrix for each cluster. This detailed representation will improve the classification performance greatly. In the simulation of face recognition, LDA mixture model outperforms PCA, LDA, and PCA mixture model in terms of classification performance.

Design Structure Matrix: A Model Proposal and Implementation on Harbor and Building Design Project

  • Akram, Salman;Kim, Jeonghwan;Pi, Seungwoo;Seo, Jongwon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.1
    • /
    • pp.144-152
    • /
    • 2013
  • Design is an iterative, generative, and multidisciplinary process by its nature. Iteration occurs often in most of the engineering design and development projects including construction. Design iterations cause rework, and extra efforts are required to get the optimal sequence and to manage the projects. Contrary to simple design, isolation of the generative iterations in complex design systems is very difficult, but reduction in overall iterations is possible. Design depends upon the information flow within domain and also among various design disciplines and organizations. Therefore, it is suggested that managers should be aware about the crucial iterations causing rework and optimal sequence as well. In this way, managers can handle design parameters related to such iterations pro-actively. There are a number of techniques to reduce iterations for various kinds of engineering designs. In this paper, parameter based Design Structure Matrix (DSM) is chosen. To create this DSM, a survey was performed and then partitioned using a model. This paper provides an easy approach to those companies involved in or intend to be involved in "design and build projects".

A Study on the Kinematic and Dynamic Analyses of Spatial Complex Kinematic Chain (공간 복합기구연쇄의 기구학 및 동역학 해석에 관한 연구)

  • 김창부;김효식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2543-2554
    • /
    • 1993
  • In this paper, the kinematic and dynamic analyses of spatial complex kinematic chain are studied. Through the new method both using the set of identification numbers and applying the DenavitHartenberg link representation method to the spatial complex kinematic chain, the kinematic configuration of the chain is represented. Some link in the part of closed chain being fictitiously cutted, the complex kinematic chain is transformed to the branched chain. The kinematic constraint equations are derived from the constraint conditions which the cutted sections of the link have to satisfy. And the joint variables being partitioned in the independent joint variables and the dependent joint variables, the dependent variables are calculated from the independent variables by using the Newton-Raphson iterative method and the pseudoinverse matrix. The equations of motion are derived under the independent joint variables by using the principle of virtual work. Algorithms for dynamic analysis are presented and simulations are done to verify accuracy and efficiency of the algorithms.

Design Structure Matrix: An Approach to Reduce Iteration and Acquire Optimal Sequence in Construction Design and Development Projects

  • Akram, Salman;Kim, Jeong-Hwan;Seo, Jong-Won
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.638-641
    • /
    • 2008
  • Design is an iterative, generative, and multidisciplinary process by its nature. Iteration is frequent in most of the engineering design and development projects including construction. Design iterations cause rework, and extra efforts are required to get the optimal sequence and to manage the projects. Contrary to simple design, isolation of the generative iterations in complex design systems is very difficult, but reduction in overall iterations is possible. Design depends upon the information flow within domain and also among various design disciplines and organizations. Therefore, it is suggested that managers should be aware about the crucial iterations causing rework and optimal sequence as well. In this way, managers can handle design parameters related to such iterations proactively. Numbers of techniques are available to reduce iterations for various kinds of engineering designs. In this paper, parameter based Design Structure Matrix (DSM) is chosen. To create this DSM, a survey was performed and then partitioned using a model. This paper provides an easy approach to those companies involved in or intend to be involved in "design and build projects."

  • PDF

Parallel Processing of 3D Rigid-Plastic FEM on a Cluster System (클러스터 시스템에서 3차원 강소성 유한요소법의 병렬처리)

  • Choi Young;Seo Yongwie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.122-129
    • /
    • 2005
  • On the cluster system, the parallel code of rigid-plastic FEM has been developed. The cluster system, Simforge, has 15 processors and the total memory is 4.5GBytes. In the developed parallel code, the distributed data of the column-wise partitioned stiffness are stored as the compressed row storage and the diagonal preconditioned conjugate gradient solver is applied. The analysis of block upsetting is performed with the parallel code on Simforge cluster system. In this paper, the analysis results are compared and discussed.

Computer-Aided Steady state Analysis of Induction Motor (컴퓨터를 이용한 유도전동기의 정상상태 해석)

  • Jung, Yon-Tack;Seo, Young-Soo;Kim, Young-Chun;Cho, Moon-Taek;Lee, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.683-685
    • /
    • 1993
  • Semiconductor switches are modelled as binary inductors, as a very low value of inductance during conduction, and infinite value of inductance otherwise. The system matrix is partitioned in such a manner as to permit efficient handling of switch status. The backward Euler method of integration is used for the solution of equation to ensure convergence. The application of thristor switching to induction motor speed control has resulted in a number of unconventional supply systems. In this paper, an analytic method for predicting the steady-state of performance of system is presented.

  • PDF

Inhibition of MMP-2 and MMP-9 activities by solvent-partitioned Sargassum horneri extracts

  • Karadeniz, Fatih;Lee, Seul-Gi;Oh, Jung Hwan;Kim, Jung-Ae;Kong, Chang-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.6
    • /
    • pp.16.1-16.7
    • /
    • 2018
  • Background: Matrix metalloproteinases (MMPs) are linked with several complications such as metastasis of cancer progression, oxidative stress, and hepatic fibrosis. Brown seaweeds are being extensively studied for their bioactive molecule content against cancer progression. In this context, Sargassum horneri was reported to possess various bioactivities including antiviral, antimicrobial, and anti-inflammatory partly due to its phenolic compound content. Methods: In this study, potential of S. horneri was evaluated through anti-MMP effect in HT1080 fibrosarcoma cells. S. horneri crude extract was fractionated with organic solvents, namely, water ($H_2O$), n-buthanol (n-BuOH), 85% aqueous methanol (85% aq. MeOH), and n-hexane. The non-toxicity of fraction samples (Sargassum horneri solvent-partitioned extracts (SHEs)) was confirmed by cell-viability assay. SHEs were tested for their ability to inhibit MMP enzymatic activity through gelatin digestion evaluation and cell migration assay. Expressions of MMP-2 and MMP-9 and tissue inhibitors of MMP (TIMPs) were evaluated by reverse transcription and Western blotting. Results: All fractions inhibited the enzymatic activities of MMP-2 and MMP-9 according to gelatin zymography. Except $H_2O$ fraction, fractions hindered the cell migration significantly. All tested fractions suppressed both mRNA and protein levels of MMP-2, MMP-9, TIMP-1, and TIMP-2. Conclusion: Overall, current results suggested that S. horneri has potential to be a good source for anti-MMP agents, and further investigations are underway for better understanding of the action mechanism and isolation and elucidation of the bioactive molecules.

High-Performance Architecture of 4×4/8×8 DCT and Quantization Circuit for Unified Video CODEC (통합 비디오 코덱을 위한 4×4/8×8 DCT와 양자화 회로의 고성능 구조)

  • Lee, Seon-Young;Cho, Kyeong-Soon
    • The KIPS Transactions:PartA
    • /
    • v.18A no.2
    • /
    • pp.39-44
    • /
    • 2011
  • This paper proposes the new high-performance circuit architecture of the transform and quantization for unified video CODEC. The proposed architecture can be applied to all kinds of transforms and quantizations for the video compression standards such as JPEG, MPEG-1/2/4, H.264 and VC-1. We defined the permutation matrices to reorder the transform matrix of the $8{\times}8$ DCT and partitioned the reordered $8{\times}8$ transform matrix into four $4{\times}4$ sub-matrices. The $8{\times}8$ DCT is performed by repeating the $4{\times}4$ DCT's based on the reordered and partitioned transform matrices. Since our circuit accepts the transform coefficients from the users, it can be extended very easily to cover any kind of DCT-based transforms for future standards. The multipliers in the DCT circuit are shared by the quantization circuit in order to minimize the circuit size. The quantization circuit is merged into the DCT circuit without any significant increase of circuit resources and processing time. We described the proposed DCT and quantization circuit at RTL, and verified its operation on FPGA board.