• Title/Summary/Keyword: particulates

Search Result 338, Processing Time 0.028 seconds

Validation of ICP-MS method for trace level analysis of Pb in plasma (혈장 중 극미량 납 분석을 위한 ICP-MS 분석법 검증)

  • Lee, Sung-Bae;Kim, Yong-Soon;Lee, Yong-Hoon;Ahn, Byung-Joon;Kim, Nam-Soo;Lee, Byung-Kook;Shin, Ho-Sang
    • Analytical Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.309-316
    • /
    • 2015
  • The analytical method of lead in plasma by ICP-MS was validated after securing environment within class 1,000 classification. We tested specificity and accuracy of within-run and between-run. According to measurement of the amount of suspended particulates in a clean room, 0.3~62 particles were detected in 0.3 µm size while 0.0~28.3 particles were observed in 0.5 µm size. Total suspended particulates met required environment with up to 90.3 particles. The MDL (Method detection limit) of the sample which has been fabricated using fetal bovine serum (FBS) blank was 1.77 ng/L, and LOQ (Limit of quantification) was 5.55 ng/L. The slope, intercept and correlation coefficient of the calibration curve were y=1.09×10−3x+4.88×10−2 and r=0.9999, which showed good correlation. The specificity, within-run and between-run accuracy satisfied the standard at more than 50 ng/L. The average lead concentration in plasma of the general people, current workers and retired workers was 55.4 ng/L, 440 ng/L, and 132 ng/L.

Development of Bag Rupturing Device with Octagonal Rotating Blade Drums for MSWs (생활계(生活系) 폐기물(廢棄物) 봉투(封套) 파봉을 위한 회전(回傳)칼날팔각(八角)드럼식(式) 파봉장치(裝置) 개발(開發)에 관(關)한 연구(硏究))

  • Lee, Byung-Sun;Na, Kyung-Duk;Han, Sang-Kuk;Choi, Woo-Zin;Park, Eun-Kyu;Kim, Dong-Ho
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.63-71
    • /
    • 2009
  • Recyclable wastes coming into material recovery facilities(MRFs) is mostly packed by plastic bag or sack bag. Bag rupturing device is essential to improve capacity and efficiency of MRFs. Bag opening works of MRFs is mostly done by numerous workers and shredder-type bag rupturing device. It often makes a problems; decreased capacity, shredded recyclables, worker safety by explosion and broken glasses, etc. In the present work, bag rupturing device with octagonal rotating blade drums has been developed to solve the existing problems and environment assessment is also performed during operation of the device. Capacity of the device was about 5.6 ton/hr at 8.2 rpm of drum revolution speed and 1.25 m/min of belt conveyor speed. It satisfied initial designed capacity(5.0 ton/hr) and max. capacity 8.8 ton/hr was achieved at 12.5 rpm of drum revolution speed and 1.50m/min of belt conveyor speed. Bag rupturing efficiencies on outer and inner bag were obtained at 100% and about 95.6% as average, respectively and original form of glass bottles in the bag was maintained without broken by about 96.5%. This result shows that the safety in hand sorting by the workers could be improved. As result of environmental assessment on the noise, vibration and particulates, the measured levels on noise, vibration and particulates show the below standard regulatory limits. It could be concluded that the problems of existing devices in MRFs could be solved by adopting the bag rupturing device with octagonal rotating blade drums in on-site operation.

Estimation of Atmospheric Deposition Velocities and Fluxes from Weather and Ambient Pollutant Concentration Conditions : Part I. Application of multi-layer dry deposition model to measurements at north central Florida site

  • Park, Jong-Kil;Eric R. Allen
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.31-42
    • /
    • 2000
  • The dry deposition velocities and fluxes of air pollutants such as SO2(g), O3(g), HNO3(g), sub-micron particulates, NO3(s), and SO42-(s) were estimated according to local meteorological elements in the atmospheric boundary layer. The model used for these calculations was the multiple layer resistance model developed by Hicks et al.1). The meteorological data were recorded on an hourly basis from July, 1990 to June, 1991 at the Austin Cary forest site, near Gainesville FL. Weekly integrated samples of ambient dry deposition species were collected at the site using triple-fiter packs. For the study period, the annual average dry deposition velocities at this site were estimated as 0.87$\pm$0.07 cm/s for SO2(g), 0.65$\pm$0.11 cm/s for O3(g), 1.20$\pm$0.14cm/s for HNO3(g), 0.0045$\pm$0.0006 cm/s for sub-micron particulates, and 0.089$\pm$0.014 cm/s for NO3-(s) and SO42-(s). The trends observed in the daily mean deposition velocities were largely seasonal, indicated by larger deposition velocities for the summer season and smaller deposition velocities for the winter season. The monthly and weekly averaged values for the deposition velocities did not show large differences over the year yet did show a tendency of increased deposition velocities in the summer and decreased values in the winter. The annual mean concentrations of the air pollutants obtained by the triple filter pack every 7 days were 3.63$\pm$1.92 $\mu\textrm{g}$/m3 for SO42-, 2.00$\pm$1.22 $\mu\textrm{g}$/m-3 for SO2, 1.30$\pm$0.59 $\mu\textrm{g}$/m-3 for HNO3, and 0.704$\pm$0.419 $\mu\textrm{g}$/m3 for NO3-, respectively. The air pollutant with the largest deposition flux was SO2 followed by HNO3, SO42-(S), and NO3-(S) in order of their magnitude. The sulfur dioxide and NO3- deposition fluxes were higher in the winter than in the summer, and the nitric acid and sulfate deposition fluxes were high during the spring and summer.

  • PDF

Development of a Multifunctional Design Concept to Improve Constructed Wetland Performance (인공습지의 성능향상을 위한 다기능 설계기법 개발)

  • Reyes, N.J.D.G.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • Constructed wetlands (CWs) are widely used to solve water quality problems caused by diffuse pollution from agricultural areas; however, phytoplankton blooms in CW systems can occur due to long hydraulic retention time (HRT), high nutrient loading, and exposure to sunlight. This study was conducted to evaluate the efficiency of a CW designed to treat agricultural diffuse pollution and develop a design concept to improve the nature-based capabilities of the system. Monitoring was conducted to assess contribution of individual wetland components (i.e. water, sediments, and plants) in the treatment performance of the system. During dry days, the turbidity and particulates concentration in the CW increased by 80 to 197% and 10 to 87%, respectively, due to the excessive growth of phytoplankton. On storm events, the concentration of particulates, organics, and nutrients were reduced by 43% to 70%, 22% to 49%, and 15% to 69% due to adequate water circulation and constant flushing of pollutants in the system. Based on the results, adequate water circulation is necessary to improve the performance of the CW. Free water surface CWs are usually designed to have a constant water level; however, the climate in South Korea is characterized by distinct dry and rainy seasons, which may not be suitable for this conventional design. This study presented a concept of multifunctional design in order to solve current CW design problems and improve the flood control, water quality management, and environmental functions of the facility.

Developing Yellow Dust and Fine Particulate Masks for Children (어린이용 황사 및 미세먼지 마스크 개발 연구)

  • Kim, Hyunwook;Seo, Hyekyung;Myong, Jun-Pyo;Yoon, Jong-Seo;Song, Yeunkun;Kim, Choongbuem
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.3
    • /
    • pp.350-366
    • /
    • 2016
  • Objectives: No 3D anthropometric analyses have been conducted for Korean children's faces for the purpose of designing respiratory protective devices. The aim of this study was to develop masks against yellow dust and fine particulates, particularly for children in Korea. Methods: This study utilized a 3D scanning method to obtain 16 facial anthropometric data from children, ages of 5 to 13 years old. A total of 144 boys and girls were recruited from the kindergarten, elementary schools and middle schools in Seoul. With facial dimensions obtained, cluster analysis was performed to categorize them into similar facial groups. For each cluster, an optimal mask was designed and manufactured using a 3D printer. In addition, lung function data were obtained from 62 subjects and compared with those of normal adults. The pulmonary physiological results were subsequently used to suggest a test method for mask certification. Results: Facial shapes were classified into tree clusters: small, medium, and large. The face width and length for the first group were small with high nosal protrusion. The face width and length for the second group were the largest among the three clusters. The third group had the largest angle of nose root - gnathion(n-prn-gn). Age was the most significant variable in the facial dimensions. Children's pulmonary physiological capacity was about 60% of adults' capacity. The results of fit test using the prototype masks developed showed very good fits for children. Conclusions: For Korean children, three mask sizes will be sufficient and practical for providing protection against yellow dust and fine particulates. Anthropometric data obtained using digitalized 3D face analysis can be very effective for designing respiratory devices. 3D images can be accurate and easily measured for multiple dimensions, particularly for curved areas of the face. It is imperative to adopt different test methods for certifying respiratory protective devices for children, since their pulmonary physiological capacity is inferior compared with that of adults.

A study of distribution characteristics of unidentified particulate components in an urban area (도시환경의 총부유먼지 중 미지성분의 분포 특성에 대한 연구)

  • Kim, Yong-Hyun;Kim, Ki-Hyun;Park, Chan-Koo;Shon, Zang-Ho;Song, Sang-Keun
    • Analytical Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.133-145
    • /
    • 2012
  • The quantitative composition of total suspended particulates (TSP) in the atmosphere is identified to consist mainly of ions, organic carbon (OC), element carbon (EC), and metals. In terms of environmental analysis, the rest of the TSP composition may be defined as unknown fraction (${\Sigma}X$) which is yet difficult to analyze both quantitatively and qualitatively. In this study, the major components of TSP were measured at an urban residential area (Gang Seo) in Seoul, Korea from February to December 2009. These TSP data were analyzed in various respects to explain the relationship between known and unknown constituents. During this study period, TSP was comprised mainly of unknown compounds (48.6%) followed by ions, OC, EC, and metals. The results of this study indicate that the distribution of ${\Sigma}X$ exhibits a strong similarity with ${\Sigma}Anions$, as they both increase with increasing TSP levels. However, if the concentrations of ${\Sigma}X$ and ${\Sigma}Anion$ are normalized against TSP, they exhibit a strong inverse correlation with each other due probably to larges differences in solubility. To establish a better strategy for air quality control in urban atmosphere, more efforts are needed to characterize unidentified proportion of particulate matters.

Dust Removal Efficiency and Operation Characteristics of Metal Filters for Coal Gasification Fines and Standard Dust Sample (금속필터를 사용한 석탄가스화 분진 및 표준 분진의 집진 효율과 운전특성)

  • Yun, Yongseung;Chung, Seok Woo;Lee, Seung Jong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.461-468
    • /
    • 2019
  • Demand for improving dust removal efficiency in coal power plants and the dust removal requirement to the level of capturing fine particulate matter and ultrafine particles have been increasing. While bag filter and electrostatic precipitator (ESP) are typically used for dust removal in the processes operating at atmospheric pressure, metal filters or ceramic filters are employed for dust which is produced at high temperature/pressure system as in coal gasification. For dust removal at the high temperature/pressure conditions, two metal filters of five compressed/sintered layers were manufactured and applied to analyze the dust removal characteristics. Manufactured metal filters exhibited more than 99% dust removal efficiency on coal gasification fine particulates in mass basis. To evaluate the fine particulate removal efficiency of less than $2.5{\mu}m$, JIS standard fine sample was used and confirmed the removal efficiencies of 97% and 70~82% on the fine particulates of $1{\sim}2.5{\mu}m$ size range. For the size range of less than $1{\mu}m$, dust removal efficiency of manufactured metal filters significantly degraded with smaller particle size. Improving methods are proposed to overcome the limitations in applying to fine dust of less than $1{\mu}m$.

Rare Earth Elements of Atmospheric Particulates (PM2.5) in Northeast Asia: Beijing and Gwangju (동북아시아 초미세먼지의 희토류 원소 특성 비교: 북경과 광주)

  • Jeong, Seok;Lee, Jiyeong;Park, Sanghee;Yang, Minjune;Chang, Hyejung;Ryu, Jong-Sik
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.863-872
    • /
    • 2022
  • Rare earth elements (REEs) have been used as one of power tracers for understanding geological and environmental changes due to their similar physico-chemical properties. In this study, we investigated the characteristics of rare earth elements in atmospheric particulates(PM2.5) collected in Beijing and Gwangju during January 2018. The total concentrations of REEs in the Beijing samples were about 16X higher than those in Gwangju samples, and both samples are enriched in light REE than heavy REE, up to 8-10 times. The Post Archean Australian Shale (PAAS)-normalized pattern showed that both samples are enriched in Eu, Tb, and Er, and displayed positive Eu but negative Ce anomalies. The elemental correlations indicate that both samples originated from China desert and Loess plateau as well as cities surrounding Beijing. This study suggests that REEs in PM2.5 can be used as a powerful proxy of revealing the difference between China and Korea, and provide basic information on the source and transport of PM2.5.

Effects of Cu and Mg on Wear Properties of SiC Particulate Reinforced Al-Si Metal Matrix Composites (SiC 입자강화 Al-Si 복합재료의 내마멸성에 미치는 Cu , Mg의 영향)

  • Shim, Shang-Han;Chung, Yong-Keun;Park, In-Min
    • Journal of Korea Foundry Society
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 1990
  • The influences of Cu and Mg addition on wear properties of SiC particulate reinforced Al-Si metal(alloy) matrix composites were investigated. Metal matrix composites were prepared by combination of compocasting and hot pressing techniques. The main results obtained are as follows : 1) The composite with Mg addition exhibits letter wear resistance than that with Cu addition. It is considered that Mg addition improved wettability of matal matrix composite by the strong segregation to the SiC / Al matrix interface. 2) After homogenization treatment, it was found that the interfacial segregation of Mg was predominant, while that of Cu was not detected. 3) The SiC / Al-11Si eutectic composite exhibits better wear resistance than the SiC / Al-6Si hypoeutectic composite does. 4) It seems that the increase in the amount of Mg addition affects on the uniform dispersion of SiC particulates, on the refinement of microstructure and on age hardening and these effects cause wear resistance improvement of composites.

  • PDF

A Study of Size and Frictional Effects on the Evolution of Melting Part I : Batch Mixer (입자크기와 마찰효과가 용융 과정에 미치는 영향 Part I : 회분식 혼련기)

  • Kim, Dong-Sung;Park, Yung-Jin;Lee, Bong-Kyu;Kim, Hyung-Su;Lee, Jae-Wook
    • The Korean Journal of Rheology
    • /
    • v.11 no.1
    • /
    • pp.44-49
    • /
    • 1999
  • Effects of particulate size and frictional characteristics were examined on the melting behavior of PP (polypropylene) in a batch mixer. Powder and pellet types of PP were used and each component was blended with PE (polyethylene) wax and clay, respectively. It was observed that small size particulates, i.e. powder systems exhibit accelerated melting behavior; and it was also found that the abrasive additive acts as an effective agent for fast melting of PP powder. Retardation of melting due to the reduced friction was observed in PP pellet/PE wax blends, while melting rate of PP powder was increased by addition of PE wax.

  • PDF