• Title/Summary/Keyword: particle swarm optimization algorithm

Search Result 464, Processing Time 0.029 seconds

Statistical Analysis of Receding Horizon Particle Swarm Optimization for Multi-Robot Formation Control (다개체 로봇 편대 제어를 위한 이동 구간 입자 군집 최적화 알고리즘의 통계적 성능 분석)

  • Lee, Seung-Mok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.115-120
    • /
    • 2019
  • In this paper, we present the results of the performance statistical analysis of the multi-robot formation control based on receding horizon particle swarm optimization (RHPSO). The formation control problem of multi-robot system can be defined as a constrained nonlinear optimization problem when considering collision avoidance between robots. In general, the constrained nonlinear optimization problem has a problem that it takes a long time to find the optimal solution. The RHPSO algorithm was proposed to quickly find a suboptimal solution to the optimization problem of multi-robot formation control. The computational complexity of the RHPSO increases as the number of candidate solutions and generations increases. Therefore, it is important to find a suboptimal solution that can be used for real-time control with minimal candidate solutions and generations. In this paper, we compared the formation error according to the number of candidate solutions and the number of generations. Through numerical simulations under various conditions, the results are analyzed statistically and the minimum number of candidate solutions and the minimum number of generations of the RHPSO algorithm are derived within the allowable control error.

Economic Power Dispatch with Valve Point Effects Using Bee Optimization Algorithm

  • Kumar, Rajesh;Sharma, Devendra;Kumar, Anupam
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.19-27
    • /
    • 2009
  • This paper presents a newly developed optimization algorithm, the Bee Optimization Algorithm (BeeOA), to solve the economic power dispatch (EPD) problem. The authors have developed a derivative free and global optimization technique based on the working of the honey bee. The economic power dispatch problem is a nonlinear constrained optimization problem. Classical optimization techniques fail to provide a global solution and evolutionary algorithms provide only a good enough solution. The proposed approach has been examined and tested on two test systems with different objectives. A simple power dispatch problem is tested first on 6 generators and then the algorithm is demonstrated on 13 thermal unit systems whose incremental fuel cost function takes into account the value point loading effect. The results are promising and show the effectiveness and robustness of the proposed approach over recently reported methods.

Fuzzy optimization of radon reduction by ventilation system in uranium mine

  • Meirong Zhang;Jianyong Dai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2222-2229
    • /
    • 2023
  • Radon and radon progeny being natural radioactive pollutants, seriously affect the health of uranium miners. Radon reduction by ventilation is an essential means to improve the working environment. Firstly, the relational model is built between the radon exhalation rate of the loose body and the ventilation parameters in the stope with radon percolation-diffusion migration dynamics. Secondly, the model parameters of radon exhalation dynamics are uncertain and described by triangular membership functions. The objective functions of the left and right equations of the radon exhalation model are constructed according to different possibility levels, and their extreme value intervals are obtained by the immune particle swarm optimization algorithm (IPSO). The fuzzy target and fuzzy constraint models of radon exhalation are constructed, respectively. Lastly, the fuzzy aggregation function is reconstructed according to the importance of the fuzzy target and fuzzy constraint models. The optimal control decision with different possibility levels and importance can be obtained using the swarm intelligence algorithm. The case study indicates that the fuzzy aggregation function of radon exhalation has an upward trend with the increase of the cut set, and fuzzy optimization provides the optimal decision-making database of radon treatment and prevention under different decision-making criteria.

Particle Swarm Optimization-Based Peak Shaving Scheme Using ESS for Reducing Electricity Tariff (전기요금 절감용 ESS를 활용한 Particle Swarm Optimization 기반 Peak Shaving 제어 방법)

  • Park, Myoung Woo;Kang, Moses;Yun, YongWoon;Hong, Seonri;BAE, KUK YEOL;Baek, Jongbok
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.388-398
    • /
    • 2021
  • This paper proposes a particle swarm optimization (PSO)-based peak shaving scheme using energy storage system (ESS) for electricity tariff reduction. The proposed scheme compares the actual load with the estimated load consumption, calculates the additional output power that the ESS needs to discharge additionally to reduce peak load, and adds the input. In addition, in order to compensate for the additional power, the process of allocating power to the determined point is performed, and an optimization that minimizes the average of the load expected at the active power allocations using PSO so that the allocated value does not affect the peak load. To investigated the performance of the proposed scheme, case study of small and large load prediction errors was conducted by reflecting actual load data and load prediction algorithm. As a result, when the proposed scheme is performed with the ESS charge and discharge control to reduce electricity tariff, even when the load prediction error is large, the peak load is successfully reduced, and the peak load reduction effect of 17.8% and electricity tariff reduction effect of 6.02% is shown.

A Study on Distributed Particle Swarm Optimization Algorithm with Quantum-infusion Mechanism (Quantum-infusion 메커니즘을 이용한 분산형 입자군집최적화 알고리즘에 관한 연구)

  • Song, Dong-Ho;Lee, Young-Il;Kim, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.527-531
    • /
    • 2012
  • In this paper, a novel DPSO-QI (Distributed PSO with quantum-infusion mechanism) algorithm improving one of the fatal defect, the so-called premature convergence, that degrades the performance of the conventional PSO algorithms is proposed. The proposed scheme has the following two distinguished features. First, a concept of neighborhood of each particle is introduced, which divides the whole swarm into several small groups with an appropriate size. Such a strategy restricts the information exchange between particles to be done only in each small group. It thus results in the improvement of particles' diversity and further minimization of a probability of occurring the premature convergence phenomena. Second, a quantum-infusion (QI) mechanism based on the quantum mechanics is introduced to generate a meaningful offspring in each small group. This offspring in our PSO mechanism improves the ability to explore a wider area precisely compared to the conventional one, so that the degree of precision of the algorithm is improved. Finally, some numerical results are compared with those of the conventional researches, which clearly demonstrates the effectiveness and reliability of the proposed DPSO-QI algorithm.

Fruit Fly Optimization based EEG Channel Selection Method for BCI (BCI 시스템을 위한 Fruit Fly Optimization 알고리즘 기반 최적의 EEG 채널 선택 기법)

  • Yu, Xin-Yang;Yu, Je-Hun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.199-203
    • /
    • 2016
  • A brain-computer interface or BCI provides an alternative method for acting on the world. Brain signals can be recorded from the electrical activity along the scalp using an electrode cap. By analyzing the EEG, it is possible to determine whether a person is thinking about his/her hand or foot movement and this information can be transferred to a machine and then translated into commands. However, we do not know which information relates to motor imagery and which channel is good for extracting features. A general approach is to use all electronic channels to analyze the EEG signals, but this causes many problems, such as overfitting and problems removing noisy and artificial signals. To overcome these problems, in this paper we used a new optimization method called the Fruit Fly optimization algorithm (FOA) to select the best channels and then combine them with CSP method to extract features to improve the classification accuracy by linear discriminant analysis. We also used particle swarm optimization (PSO) and a genetic algorithm (GA) to select the optimal EEG channel and compared the performance with that of the FOA algorithm. The results show that for some subjects, the FOA algorithm is a better method for selecting the optimal EEG channel in a short time.

Development of Optimal Design User Interface for Waveguide tee Junction using PSO Algorithm and VBA (PSO 알고리즘과 VBA를 이용한 Waveguide tee Junction의 최적설계 인터페이스 개발)

  • Park, Hyun-Soo;Byun, Jin-Kyu;Lee, Dal-Ho;Lee, Hyang-Beom
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.36-39
    • /
    • 2009
  • We developed an optimal design interface based on VBA(Visual Basic Application) that takes advantage of API(Application Program Interface) function of commonly used EM analysis software. The developed interface is adopted for an optimal design of a septum in a waveguide tee junction using PSO(Particle Swarm Optimization) algorithm. The objective function of the optimal design is defined by $S_{11}$-parameter of the waveguide tee junction Design variables are established as position of the septum, that are changed to satisfy the design goal Using the developed design interface and PSO algorithm, the objective function converged to the smallest value, showing the validity of the proposed method. The design interface was developed using Microsoft Excel software, enabling easy control of design parameters for user. Also, various analysis parameters can be set in the Excel interface, including waveguide input mode and frequency. After completion of the design, field solutions at user-specified positrons can be extracted to the output files in complex number form.

  • PDF

A hybrid imperialist competitive ant colony algorithm for optimum geometry design of frame structures

  • Sheikhi, Mojtaba;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.403-416
    • /
    • 2013
  • This paper describes new optimization strategy that offers significant improvements in performance over existing methods for geometry design of frame structures. In this study, an imperialist competitive algorithm (ICA) and ant colony optimization (ACO) are combined to reach to an efficient algorithm, called Imperialist Competitive Ant Colony Optimization (ICACO). The ICACO applies the ICA for global optimization and the ACO for local search. The results of optimal geometry for three benchmark examples of frame structures, demonstrate the effectiveness and robustness of the new method presented in this work. The results indicate that the new technique has a powerful search strategies due to the modifications made in search module of ICACO. Higher rate of convergence is the superiority of the presented algorithm in comparison with the conventional mathematical methods and non hybrid heuristic methods such as ICA and particle swarm optimization (PSO).

Gamma ray interactions based optimization algorithm: Application in radioisotope identification

  • Ghalehasadi, Aydin;Ashrafi, Saleh;Alizadeh, Davood;Meric, Niyazi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3772-3783
    • /
    • 2021
  • This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search for the global minima of 30 standard benchmark functions. The paper also considers solving real optimization problem in the field of nuclear engineering, radioisotope identification. The results are compared with those obtained by the Particle Swarm Optimization, Genetic Algorithm, Gravitational Search Algorithm and Grey Wolf Optimizer algorithms. The comparisons indicate that the GRIBO algorithm is able to provide very competitive results compared to other well-known meta-heuristics.

Multi-Objective Optimization Model of Electricity Behavior Considering the Combination of Household Appliance Correlation and Comfort

  • Qu, Zhaoyang;Qu, Nan;Liu, Yaowei;Yin, Xiangai;Qu, Chong;Wang, Wanxin;Han, Jing
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1821-1830
    • /
    • 2018
  • With the wide application of intelligent household appliances, the optimization of electricity behavior has become an important component of home-based intelligent electricity. In this study, a multi-objective optimization model in an intelligent electricity environment is proposed based on economy and comfort. Firstly, the domestic consumer's load characteristics are analyzed, and the operating constraints of interruptible and transferable electrical appliances are defined. Then, constraints such as household electrical load, electricity habits, the correlation minimization electricity expenditure model of household appliances, and the comfort model of electricity use are integrated into multi-objective optimization. Finally, a continuous search multi-objective particle swarm algorithm is proposed to solve the optimization problem. The analysis of the corresponding example shows that the multi-objective optimization model can effectively reduce electricity costs and improve electricity use comfort.