• 제목/요약/키워드: particle swarm optimization algorithm

검색결과 466건 처리시간 0.021초

Particle Swarm Optimization을 이용한 소아고노출 생활자계 추정식 개발 (Development of the Estimating Equation for Children's High-Exposure to Habitat's Magnetic Field using Particle Swarm Optimization)

  • 황기현
    • 한국정보통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.1085-1092
    • /
    • 2010
  • 본 논문에서는 최적화 알고리즘인 PSO를 이용하여 한국인의 생활자계 노출실태 조사 시 확보한 16세 이하의 미취학 아동, 초등학생, 중학생 실측 데이터베이스를 활용하여, 자계노출의 정도를 실측에 의하지 않고 추정할 수 있는 '24시간 소아고노출 생활자계 추정식'을 개발하였다. 24시간 개인자계 노출량 추정식의 입력 데이터는 성, 연령, 주거형태, 주거지 크기, 선로이격거리 및 송전전압을 사용하였다. 그리고 16세 이하에 대해서 24시간 고노출 개인자계 노출분포, 자계노출의 특성, 특정 조건별 자계노출특성 등을 분석하였다.

Improved Particle Swarm Optimization Algorithm for Adaptive Frequency-Tracking Control in Wireless Power Transfer Systems

  • Li, Yang;Liu, Liu;Zhang, Cheng;Yang, Qingxin;Li, Jianxiong;Zhang, Xian;Xue, Ming
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1470-1478
    • /
    • 2018
  • Recently, wireless power transfer (WPT) via coupled magnetic resonances has attracted a lot of attention owing to its long operation distance and high efficiency. However, the WPT systems is over-coupling and a frequency splitting phenomenon occurs when resonators are placed closely, which leads to a decrease in the transfer power. To solve this problem, an adaptive frequency tracking control (AFTC) was used based on a closed-loop control scheme. An improved particle swarm optimization (PSO) algorithm was proposed with the AFTC to track the maximum power point in real time. In addition, simulations were carried out. Finally, a WPT system with the AFTC was demonstrated to experimentally validate the improved PSO algorithm and its tracking performance in terms of optimal frequency.

Optimization of Decision Tree for Classification Using a Particle Swarm

  • Cho, Yun-Ju;Lee, Hye-Seon;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • 제10권4호
    • /
    • pp.272-278
    • /
    • 2011
  • Decision tree as a classification tool is being used successfully in many areas such as medical diagnosis, customer churn prediction, signal detection and so on. The main advantage of decision tree classifiers is their capability to break down a complex structure into a collection of simpler structures, thus providing a solution that is easy to interpret. Since decision tree is a top-down algorithm using a divide and conquer induction process, there is a risk of reaching a local optimal solution. This paper proposes a procedure of optimally determining thresholds of the chosen variables for a decision tree using an adaptive particle swarm optimization (APSO). The proposed algorithm consists of two phases. First, we construct a decision tree and choose the relevant variables. Second, we find the optimum thresholds simultaneously using an APSO for those selected variables. To validate the proposed algorithm, several artificial and real datasets are used. We compare our results with the original CART results and show that the proposed algorithm is promising for improving prediction accuracy.

시뮬레이션 최적화 문제 해결을 위한 이산 입자 군집 최적화에서 샘플수와 개체수의 효과 (The Effect of Sample and Particle Sizes in Discrete Particle Swarm Optimization for Simulation-based Optimization Problems)

  • 임동순
    • 산업경영시스템학회지
    • /
    • 제40권1호
    • /
    • pp.95-104
    • /
    • 2017
  • This paper deals with solution methods for discrete and multi-valued optimization problems. The objective function of the problem incorporates noise effects generated in case that fitness evaluation is accomplished by computer based experiments such as Monte Carlo simulation or discrete event simulation. Meta heuristics including Genetic Algorithm (GA) and Discrete Particle Swarm Optimization (DPSO) can be used to solve these simulation based multi-valued optimization problems. In applying these population based meta heuristics to simulation based optimization problem, samples size to estimate the expected fitness value of a solution and population (particle) size in a generation (step) should be carefully determined to obtain reliable solutions. Under realistic environment with restriction on available computation time, there exists trade-off between these values. In this paper, the effects of sample and population sizes are analyzed under well-known multi-modal and multi-dimensional test functions with randomly generated noise effects. From the experimental results, it is shown that the performance of DPSO is superior to that of GA. While appropriate determination of population sizes is more important than sample size in GA, appropriate determination of sample size is more important than particle size in DPSO. Especially in DPSO, the solution quality under increasing sample sizes with steps is inferior to constant or decreasing sample sizes with steps. Furthermore, the performance of DPSO is improved when OCBA (Optimal Computing Budget Allocation) is incorporated in selecting the best particle in each step. In applying OCBA in DPSO, smaller value of incremental sample size is preferred to obtain better solutions.

Optimal Location of FACTS Devices Using Adaptive Particle Swarm Optimization Hybrid with Simulated Annealing

  • Ajami, Ali;Aghajani, Gh.;Pourmahmood, M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.179-190
    • /
    • 2010
  • This paper describes a new stochastic heuristic algorithm in engineering problem optimization especially in power system applications. An improved particle swarm optimization (PSO) called adaptive particle swarm optimization (APSO), mixed with simulated annealing (SA), is introduced and referred to as APSO-SA. This algorithm uses a novel PSO algorithm (APSO) to increase the convergence rate and incorporate the ability of SA to avoid being trapped in a local optimum. The APSO-SA algorithm efficiency is verified using some benchmark functions. This paper presents the application of APSO-SA to find the optimal location, type and size of flexible AC transmission system devices. Two types of FACTS devices, the thyristor controlled series capacitor (TCSC) and the static VAR compensator (SVC), are considered. The main objectives of the presented method are increasing the voltage stability index and over load factor, decreasing the cost of investment and total real power losses in the power system. In this regard, two cases are considered: single-type devices (same type of FACTS devices) and multi-type devices (combination of TCSC, SVC). Using the proposed method, the locations, type and sizes of FACTS devices are obtained to reach the optimal objective function. The APSO-SA is used to solve the above non.linear programming optimization problem for better accuracy and fast convergence and its results are compared with results of conventional PSO. The presented method expands the search space, improves performance and accelerates to the speed convergence, in comparison with the conventional PSO algorithm. The optimization results are compared with the standard PSO method. This comparison confirms the efficiency and validity of the proposed method. The proposed approach is examined and tested on IEEE 14 bus systems by MATLAB software. Numerical results demonstrate that the APSO-SA is fast and has a much lower computational cost.

PSO의 특징과 차원성에 관한 비교연구 (Comparative Study on Dimensionality and Characteristic of PSO)

  • 박병준;오성권;김용수;안태천
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.328-338
    • /
    • 2006
  • A new evolutionary computation technique, called particle swarm optimization(PSO), has been proposed and introduced recently. PSO has been inspired by the social behavior of flocking organisms, such as swarms of birds and fish schools and PSO is an algorithm that follows a collaborative population-based search model. Each particle of swarm flies around in a multidimensional search space looking for the optimal solution. Then, Particles adjust their position according to their own and their neighboring-particles experience. In this paper, characteristics of PSO such as mentioned are reviewed and compared with GA which is based on the evolutionary mechanism in natural selection. Also dimensionalities of PSO and GA are compared throughout numeric experimental studies. The comparative studies demonstrate that PSO is characterized as simple in concept, easy to implement, and computationally efficient and can generate a high-quality solution and stable convergence characteristic than GA.

Optimized Neural Network Weights and Biases Using Particle Swarm Optimization Algorithm for Prediction Applications

  • Ahmadzadeh, Ezat;Lee, Jieun;Moon, Inkyu
    • 한국멀티미디어학회논문지
    • /
    • 제20권8호
    • /
    • pp.1406-1420
    • /
    • 2017
  • Artificial neural networks (ANNs) play an important role in the fields of function approximation, prediction, and classification. ANN performance is critically dependent on the input parameters, including the number of neurons in each layer, and the optimal values of weights and biases assigned to each neuron. In this study, we apply the particle swarm optimization method, a popular optimization algorithm for determining the optimal values of weights and biases for every neuron in different layers of the ANN. Several regression models, including general linear regression, Fourier regression, smoothing spline, and polynomial regression, are conducted to evaluate the proposed method's prediction power compared to multiple linear regression (MLR) methods. In addition, residual analysis is conducted to evaluate the optimized ANN accuracy for both training and test datasets. The experimental results demonstrate that the proposed method can effectively determine optimal values for neuron weights and biases, and high accuracy results are obtained for prediction applications. Evaluations of the proposed method reveal that it can be used for prediction and estimation purposes, with a high accuracy ratio, and the designed model provides a reliable technique for optimization. The simulation results show that the optimized ANN exhibits superior performance to MLR for prediction purposes.

이항 반응 실험의 확률적 전역최적화 기법연구 (A Study on the Stochastic Optimization of Binary-response Experimentation)

  • 이동훈;황근철;이상일;윤원영
    • 한국시뮬레이션학회논문지
    • /
    • 제32권1호
    • /
    • pp.23-34
    • /
    • 2023
  • 본 논문의 목적은 이항출력 실험을 이용할 경우에 확률적 전역 최적화 방법론들을 검토하고 알고리즘들간의 성능을 비교하기 위한 것이다. 모 성공확률은 알수 없고 확률적 특성을 갖기 때문에 확률적 전역 최적화 방법론에서는 모 성공확률 대신 성공확률의 추정치를 이용한다. 언덕오르기 알고리즘 , 단순랜덤탐색, 랜덤재출발 랜덤탐색, 랜덤 최적화, 담금질 기법 및 군집기반의 알고리즘인 입자 군집 최적화 알고리즘을 확률적 전역 최적화 알고리즘으로 사용하였다. 알고리즘의 비교를 위하여 두가지 테스트 함수(하나는 단봉이고 나머지는 다봉임)가 제안되었고 몬테카를로 시뮬레이션을 이용하여 알고리즘의 성능을 평가하였다. 단순 테스트 함수에 대하여는 모든 알고리즘이 유사한 성능을 보이고 있다. 복잡한 다봉의 테스트 함수에 대하여는 랜덤재출발 랜덤최적화, 담금질 기법과 군집 기반의 입자군집 알고리즘이 훨씬 더 좋은 성능을 보임을 알 수 있다.

입자군집최적화와 차분진화알고리즘 간의 공진화를 활용한 교섭게임 관찰 (Observation of Bargaining Game using Co-evolution between Particle Swarm Optimization and Differential Evolution)

  • 이상욱
    • 한국콘텐츠학회논문지
    • /
    • 제14권11호
    • /
    • pp.549-557
    • /
    • 2014
  • 근래에 게임이론 분야에서 진화계산법을 사용한 교섭게임 분석은 중요한 이슈 중에 하나이다. 본 논문에서는 이질적인 두 인공 에이전트 간의 공진화를 활용하여 교섭게임을 관찰한다. 두 인공 에이전트를 모델링하기 위해 사용된 전략은 진화전략의 종류인 입자군집최적화와 차분진화알고리즘이다. 교섭게임에서 각 전략이 최선의 결과를 얻기 위한 알고리즘 모수들을 조사하고 두 전략의 공진화를 관찰하여 어느 알고리즘이 교섭게임에 더 우수한지 관찰한다. 컴퓨터 시뮬레이션 실험 결과 입자군집최적화 전략이 차분진화알고리즘 전략보다 교섭게임에서 더 우수한 성능을 보임을 확인하였다.

Metaheuristic Optimization Techniques for an Electromagnetic Multilayer Radome Design

  • Nguyen, Trung Kien;Lee, In-Gon;Kwon, Obum;Kim, Yoon-Jae;Hong, Ic-Pyo
    • Journal of electromagnetic engineering and science
    • /
    • 제19권1호
    • /
    • pp.31-36
    • /
    • 2019
  • In this study, an effective method for designing an electromagnetic multilayer radome is introduced. This method is achieved by using ant colony optimization for a continuous domain in the transmission coefficient maximization with stability for a wide angle of incidence in both perpendicular and parallel polarizations in specific X- and Ku-bands. To obtain the optimized parameter for a C-sandwich radome, particle swarm optimization algorithm is operated to give a clear comparison on the effectiveness of ant colony optimization for a continuous domain. The qualification of an optimized multilayer radome is also compared with an effective solid radome type in transmitted power stability and presented in this research.