• Title/Summary/Keyword: particle swarm algorithm (PSO)

Search Result 333, Processing Time 0.03 seconds

Intelligent Control of Induction Motor Using Hybrid System GA-PSO

  • Kim, Dong-Hwa;Park, Jin-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1086-1091
    • /
    • 2005
  • This paper focuses on intelligent control of induction motor by hybrid system consisting of GA-PSO. Induction motor has been using in industrial area. However, it is challengeable on how we control effectively. From this point, an optimal solution using GA (Genetic Algorithm) and PSO (Particle Swarm Optimization) is introduced to intelligent control. In this case, it is possible to obtain local solution because chromosomes or individuals which have only a close affinity can convergent. To improve an optimal learning solution of control, This paper deal with applying PSO and Euclidian data distance to mutation procedure on GA's differentiation. Through this approaches, we can have global and local optimal solution together, and the faster and the exact optimal solution without any local solution. Four test functions are used for proof of this suggested algorithm.

  • PDF

HS-PSO Hybrid Optimization Algorithm for HS Performance Improvement (HS 성능 향상을 위한 HS-PSO 하이브리드 최적화 알고리즘)

  • Tae-Bong Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.203-209
    • /
    • 2023
  • Harmony search(HS) does not use the evaluation of individual harmony when referring to HM when constructing a new harmony, but particle swarm optimization(PSO), on the contrary, uses the evaluation value of individual particles and the evaluation value of the population to find a solution. However, in this study, we tried to improve the performance of the algorithm by finding and identifying similarities between HS and PSO and applying the particle improvement process of PSO to HS. To apply the PSO algorithm, the local best of individual particles and the global best of the swam are required. In this study, the process of HS improving the worst harmony in harmony memory(HM) was viewed as a process very similar to that of PSO. Therefore, the worst harmony of HM was regarded as the local best of a particle, and the best harmony was regarded as the global best of swam. In this way, the performance of the HS was improved by introducing the particle improvement process of the PSO into the HS harmony improvement process. The results of this study were confirmed by comparing examples of optimization values for various functions. As a result, it was found that the suggested HS-PSO was much better than the existing HS in terms of accuracy and consistency.

A Hybridization of Adaptive Genetic Algorithm and Particle Swarm Optimization for Numerical Optimization Functions

  • Yun, Young-Su;Gen, Mitsuo
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.463-467
    • /
    • 2008
  • Heuristic optimization using hybrid algorithms have provided a robust and efficient approach for solving many optimization problems. In this paper, a new hybrid algorithm using adaptive genetic algorithm (aGA) and particle swarm optimization (PSO) is proposed. The proposed hybrid algorithm is applied to solve numerical optimization functions. The results are compared with those of GA and other conventional PSOs. Finally, the proposed hybrid algorithm outperforms others.

  • PDF

On the Comparison of Particle Swarm Optimization Algorithm Performance using Beta Probability Distribution (베타 확률분포를 이용한 입자 떼 최적화 알고리즘의 성능 비교)

  • Lee, ByungSeok;Lee, Joon Hwa;Heo, Moon-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.854-867
    • /
    • 2014
  • This paper deals with the performance comparison of a PSO algorithm inspired in the process of simulating the behavior pattern of the organisms. The PSO algorithm finds the optimal solution (fitness value) of the objective function based on a stochastic process. Generally, the stochastic process, a random function, is used with the expression related to the velocity included in the PSO algorithm. In this case, the random function of the normal distribution (Gaussian) or uniform distribution are mainly used as the random function in a PSO algorithm. However, in this paper, because the probability distribution which is various with 2 shape parameters can be expressed, the performance comparison of a PSO algorithm using the beta probability distribution function, that is a random function which has a high degree of freedom, is introduced. For performance comparison, 3 functions (Rastrigin, Rosenbrock, Schwefel) were selected among the benchmark Set. And the convergence property was compared and analyzed using PSO-FIW to find the optimal solution.

A Design and Analysis of Improved Firefly Algorithm Based on the Heuristic (휴리스틱에 의하여 개선된 반딧불이 알고리즘의 설계와 분석)

  • Rhee, Hyun-Sook;Lee, Jung-Woo;Oh, Kyung-Whan
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.39-44
    • /
    • 2011
  • In this paper, we propose a method to improve the Firefly Algorithm(FA) introduced by Xin-She Yang, recently. We design and analyze the improved firefly algorithm based on the heuristic. We compare the FA with the Particle Swarm Optimization (PSO) which the problem domain is similar with the FA in terms of accuracy, algorithm convergence time, the motion of each particle. The compare experiments show that the accuracy of FA is not worse than PSO's, but the convergence time of FA is slower than PSO's. In this paper, we consider intuitive reasons of slow convergence time problem of FA, and propose the improved version of FA using a partial mutation heuristic based on the consideration. The experiments using benchmark functions show the accuracy and convergence time of the improved FA are better than them of PSO and original FA.

A study on analysis of particle swarm optimization algorithm for the optimum design of rectenna for wireless power transmission (무선전력전송용 렉테나 최적 설계를 위한 PSO 알고리즘 분석 연구)

  • Kim, Koon-Tae;Nam, Yeong-Bin;Oh, Seung-Hun;Lee, Jung-Hyeok;Kang, Seong-In;Kim, Hyeong-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.2
    • /
    • pp.34-38
    • /
    • 2012
  • In this paper, the particle swarm optimization (PSO) algorithm is adopted to design a modified ring-slot type patch rectenna with a resonance frequency of 2.45GHz. In order to accomplish minimization of dimensions and circular polarization (CP) and harmonic suppression, axial direction slits and side-cuts are added to the patch of the ring. The PSO manipulated this kind of multi-dimensional problem very well, and as a result, the designed rectenna shows a desirable performance of return loss of 21.36dB and axial ratio of 2.92dB at the frequency of 2.45GHz with compact sizing.

  • PDF

Comparison of Particle Swarm Optimization and the Genetic Algorithm in the Improvement of Power System Stability by an SSSC-based Controller

  • Peyvandi, M.;Zafarani, M.;Nasr, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.182-191
    • /
    • 2011
  • Genetic algorithms (GA) and particle swarm optimization (PSO) are the most famous optimization techniques among various modern heuristic optimization techniques. These two approaches identify the solution to a given objective function, but they employ different strategies and computational effort; therefore, a comparison of their performance is needed. This paper presents the application and performance comparison of the PSO and GA optimization techniques for a static synchronous series compensator-based controller design. The design objective is to enhance power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem, and both PSO and GA optimization techniques are employed to search for the optimal controller parameters.

Optimal Power Scheduling in Multi-Microgrid System Using Particle Swarm Optimization

  • Pisei, Sen;Choi, Jin-Young;Lee, Won-Poong;Won, Dong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1329-1339
    • /
    • 2017
  • This paper presents the power scheduling of a multi-microgrid (MMG) system using an optimization technique called particle swarm optimization (PSO). The PSO technique has been shown to be most effective at solving the various problems of the economic dispatch (ED) in a power system. In addition, a new MMG system configuration is proposed in this paper, through which the optimal power flow is achieved. Both optimization and power trading methods within an MMG are studied. The results of implementing PSO in an MMG system for optimal power flow and cost minimization are obtained and compared with another attractive and efficient optimization technique called the genetic algorithm (GA). The comparison between these two effective methods provides very competitive results, and their operating costs also appear to be comparable. Finally, in this study, power scheduling and a power trading method are obtained using the MATLAB program.

Generating unit Maintenance Scheduling based on PSO Algorithm (PSO알고리즘에 기초한 발전기 보수정지)

  • Park, Young-Soo;Kim, Jin-Ho;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.222-224
    • /
    • 2006
  • This paper addresses a particle swarm optimization-based approach for solving a generating unit maintenance scheduling problem(GMS) with some constraints. We focus on the power system reliability such as reserve ratio better than cost function as the objective function of GMS problem. It is shown that particle swarm optimization-based method is effective in obtaining feasible schedules such as GMS problem related to power system planning and operation. In this paper, we find the optimal solution of the GMS problem within a specific time horizon using particle swarm optimization algorithm. Simple case study with 16-generators system is applicable to the GMS problem. From the result, we can conclude that PSO is enough to look for the optimal solution properly in the generating unit maintenance scheduling problem.

  • PDF

Improved Performance of Permanent Magnet Synchronous Motor by using Particle Swarm Optimization Techniques

  • Elwer, A.S.;Wahsh, S.A.
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.207-214
    • /
    • 2009
  • This paper presents a modem approach for speed control of a PMSM using the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the PI-Controller. The overall system simulated under various operating conditions and an experimental setup is prepared. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. Comparison between different controllers is achieved, using a PI controller which is tuned by two methods, firstly manually and secondly using the PSO technique. The system is tested under variable operating conditions. Implementation of the experimental setup is done. The simulation results show good dynamic response with fast recovery time and good agreement with experimental controller.