• Title/Summary/Keyword: particle simulations

Search Result 450, Processing Time 0.032 seconds

Synthesis of $LiCoO_{2}$ powders from precursors prepared by precipitation process

  • Park, Cheong-Song;La, Jung-In;Kim, Do-Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.87-90
    • /
    • 2002
  • $LiCoO_{2}$ powders were synthesized at various temperatures using lithium hydroxide and cobalt hydroxide as precursors prepared by precipitation process and freeze-drying. In this study, the$LiCoO_{2}$ samples were synthesized via a solid state reaction with various LiOH concentration between 10 % and 30 % excess. And $LiCoO_{2}$powders were calcined at 600~$800^{\circ}C$ in a short time. Measurements of XRD and SEM were performed to characterize the properties of the prepared materials. The effect of amount of Li ions on the structural change in powder has been examined using the XRD analysis. For the not added excess of LiOH, CoOOH phase presented in the XRD pattern of $LiCoO_{2}$ due to loss of Li ions during firing. The morphology and particle size of the powders were examined using SEM. The obtained powders are high temperature-$LiCoO_{2}$HT-LiCoO$_{2}$) and homogeneous with the range of grain size in the order of hundreds of nanometers. The effects of variation of LiOH concentration on the structural change in powder were investigated using the Rietveld analysis. As an analysis result, c/a is constant by 4.99 on all occasions. Finally, the structure of HT-$LiCoO_{2}$ was simulated by the commercial software $Creius^{2}$(Molecular Simulations, Inc.) from the results of Rietveld analysis.

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF

Effect of Double Grid Cathode in IEC Device (IEC 장치에서 이중 그리드 음극의 영향)

  • Ju, Heung-Jin;Kim, Bong-Seok;Hwang, Hui-Dong;Park, Jeong-Ho;Choi, Seung-Kil;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.724-729
    • /
    • 2010
  • We have proposed a new configuration on the cathode structure to improve a neutron yield without the application of external ion sources in an inertial electrostatic confinement (IEC) device. A neutron yield in the IEC device is closely related to the potential well structure generated inside the cathode and is proportional to the ion current. Therefore, the application of a double grid cathode structure to the IEC device is expected to produce a higher ion current and neutron yield than at a single grid cathode due to a high electric field strength generated around the cathode. These possibilities were verified as compared with the ion current calculated from both shape of the single and double grid cathode. Additionally from the results of ion's lives and trajectories examined at various outer cathode voltages and grid cathode configurations by using particle simulations, the validity of the double grid cathode was confirmed.

AN OPTIMUM DESIGN STUDY OF INTERLACING NOZZLE BY ANALYZING FLUID FLOW INSIDE INTERLACING NOZZLES

  • Juraeva Makhsuda;Ryu Kyung Jin;Kim Sang Dug;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.93-97
    • /
    • 2005
  • Air interlacing serves to protect the yarn against damage, strengthens inter-filament compactness or cohesion, and ensures fabric consistency. The air interlacing nozzle is used to introduce intermittent nips to a filament yarn so as to improve its performance in textile processing. This study investigates the effect of interlacing nozzle geometry on the interlacing process. The geometries of interlacing nozzles with multiple air inlets located across the width of a yarn channels are investigated. The basic interlacing nozzle is the yarn channel, with a perpendicular single air inlet in the middle. The yarn channel shapes are cross sections with semicircular or rectangular shapes. This paper presents three doubled sub air inlets with main air inlet and one of them is slightly inclined doubled sub air inlets with main air inlet. The compressed air coming out from the inlet hits the opposing wall of the yarn channel, divides into two branches, flows trough the top side of yarn channel, joins with the compressed air coming out from the sub air inlet and then creates two free jets at both ends of the yarn channel. The compressed air moves in the shape of two opposing directional vortices. The CFD-FASTRAN was used to perform steady simulations of impinging jet flow inside of the interlace nozzles. The vortical structure and the flow pattern such as pressure contour, particle traces, velocity vector plots inside of interlace nozzle geometry are discussed in this paper.

  • PDF

Surface Modification with Atmospheric Microwave Agron Plasma Jet Assisted with Admixture of H2O2 and Analysis of Plasma Characteristics

  • Won, I.H.;Shin, H.K.;Kwon, H.C.;Kim, H.Y.;Kang, S.K.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.544-545
    • /
    • 2013
  • Recently, low-temperature atmospheric-pressure plasmas have been investigated [1,2] for biomedical applications and surface treatments. Experiments for improving hydrophilicity of stainless steel (SUS 304) plate with atmospheric microwave argon and H2O2 mixture plasma jet [3] were carried out and experimental measurements and plasma simulations were conducted for investigating the characteristics of plasma for the process. After 30 s of low power (under 10 W) and low temperature (under $50^{\circ}C$) plasma treatment, the water contact angle decreased rapidly to around $10^{\circ}$ from $75^{\circ}$ and was maintained under $30^{\circ}$ for a day (24 hours). The surface free energy, calculated from the contact angles, increased. The chemical properties of the surface were examined by X-ray Photoelectron Spectroscopy (XPS) and the surface morphology and roughness were examined by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) respectively. The characteristics of plasma sources with several frequencies were investigated by Optical Emission Spectroscopy (OES) measurement and one-dimensional Particle-in-Cell (PIC) simulation and zero-dimensional global simulation [4]. The relation between plasma components and the efficacy of the surface modification were discussed.

  • PDF

Authoring Software Development of 3D Natural Environment for Realistic Contents (실감형 콘텐츠 제작을 위한 3D 자연환경 저작 소프트웨어 개발)

  • Lee, Ran-Hee;Lee, Kyu-Nam;Kang, Im-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.9
    • /
    • pp.108-116
    • /
    • 2007
  • Nowadays, many graphic researchers are interested in 3D outdoor environment. They want to express more realistic natural background with natural phenomenon because computer hardware has become more powerful and increased a demand for a background of 3D natural environment in a content. Especially, e-sports contents and simulation contents with outdoor environment need more natural environment for a background than indoor contents. It is very important technology for a quality of 3D outdoor contents. We propose a software EMtool(Environment Making Tool) for authoring of natural environment for realistic contents. EMtool has been developed to depict relationship and interaction between natural phenomena and include methods for creating natural environment and natural objects. The proposed results are applied to real-time 3D contents such as 3D golf games and simulations for natural objects.

Modeling Gamma-Ray Emission From the High-Mass X-Ray Binary LS 5039

  • Owocki, Stan;Okazaki, Atsuo;Romero, Gustavo
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.51-55
    • /
    • 2012
  • A few high-mass X-ray binaries-consisting of an OB star plus compact companion-have been observed by Fermi and ground-based Cerenkov telescopes like High Energy Stereoscopic System (HESS) to be sources of very high energy (VHE; up to 30 TeV) ${\gamma}$-rays. This paper focuses on the prominent ${\gamma}$-ray source, LS 5039, which consists of a massive O6.5V star in a 3.9-day-period, mildly elliptical ($e{\approx}0.24$) orbit with its companion, assumed here to be an unmagnetized compact object (e.g., black hole). Using three dimensional smoothed particle hydrodynamics simulations of the Bondi-Hoyle accretion of the O-star wind onto the companion, we find that the orbital phase variation of the accretion follows very closely the simple Bondi-Hoyle-Lyttleton (BHL) rate for the local radius and wind speed. Moreover, a simple model, wherein intrinsic emission of ${\gamma}$-rays is assumed to track this accretion rate, reproduces quite well Fermi observations of the phase variation of ${\gamma}$-rays in the energy range 0.1-10 GeV. However for the VHE (0.1-30 TeV) radiation observed by the HESS Cerenkov telescope, it is important to account also for photon-photon interactions between the ${\gamma}$-rays and the stellar optical/UV radiation, which effectively attenuates much of the strong emission near periastron. When this is included, we find that this simple BHL accretion model also quite naturally fits the HESS light curve, thus making it a strong alternative to the pulsar-wind-shock models commonly invoked to explain such VHE ${\gamma}$-ray emission in massive-star binaries.

Sources of the High-Latitude Thermospheric Neutral Mass Density Variations

  • Kwak, Young-Sil;Richmond, Arthur;Deng, Yue;Ahn, Byung-Ho;Cho, Kyung-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.329-335
    • /
    • 2010
  • We investigate the sources of the variation of the high-latitude thermospheric neutral mass density depending on the interplanetary magnetic field (IMF) conditions. For this purpose, we have carried out the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) simulations for various IMF conditions under summer condition in the southern hemisphere. The NCAR-TIEGCM is combined with a new empirical model that provides a forcing to the thermosphere in high latitudes. The difference of the high-latitude thermospheric neutral mass density (subtraction of the values for zero IMF condition from the values for non-zero IMF conditions) shows a dependence on the IMF condition: For negative $B_y$ condition, there are significantly enhanced difference densities in the dusk sector and around midnight. Under the positive-$B_y$ condition, there is a decrease in the early morning hours including the dawn side poleward of $-70^{\circ}$. For negative $B_z$, the difference of the thermospheric densities shows a strong enhancement in the cusp region and around midnight, but decreases in the dawn sector. In the dusk sector, those values are relatively larger than those in the dawn sector. The density difference under positive-$B_z$ condition shows decreases generally. The density difference is more significant under negative-$B_z$ condition than under positive-$B_z$ condition. The dependence of the density difference on the IMF conditions in high latitudes, especially, in the dawn and dusk sectors can be explained by the effect of thermospheric winds that are associated with the ionospheric convection and vary following the direction of the IMF. In auroral and cusp regions, heating of thermosphere by ionospheric currents and/or auroral particle precipitation can be also the source of the dependence of the density difference on the IMF conditions.

Evaluation of the mechanical properties of discontinuous rock masses by using a bonded-particle model (입자결합모델을 이용한 불연속체 암반의 역학적 물성 평가)

  • Park Eui-Seob;Ryu Chang-Ha;Bae Seong-Ho
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.348-358
    • /
    • 2005
  • Although the evaluation of the mechanical properties and behavior of discontinuous rock masses is very important for the design of underground openings, it has always been considered the most difficult problem. One of the difficulties in describing the rock mass behavior is assigning the appropriate constitutive model. This limitation may be overcome with the progress in discrete element software such as PFC, which does not need the user to prescribe a constitutive model for rock mass. Instead, the micro-scale properties of the intact rock and joints are defined and the macro-scale response results from those properties and the geometry of the problem. In this paper, a $30m{\times}30m{\times}30m$ jointed rock mass of road tunnel site was analyzed. A discrete fracture network was developed from the joint geometry obtained from core logging and surface survey. Using the discontinuities geometry from the DFN model, PFC simulations were carried out, starting with the intact rock and systematically adding the joints and the stress-strain response was recorded for each case. With the stress-strain response curves, the mechanical properties of discontinuous rock masses were determined and compared to the results of empirical methods such as RMR, Q and GSI. The values of Young's modulus, Poisson's ratio and peak strength are almost similar from PFC model and Empirical methods. As expected, the presence of joints had a pronounced effect on mechanical properties of the rock mass. More importantly, the mechanical response of the PFC model was not determined by a user specified constitutive model.

  • PDF

Electron Accelerator Shielding Design of KIPT Neutron Source Facility

  • Zhong, Zhaopeng;Gohar, Yousry
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.785-794
    • /
    • 2016
  • The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ~0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper.