• 제목/요약/키워드: particle simulation

검색결과 1,290건 처리시간 0.034초

라그랑지안 입자모델을 활용한 도시기온 예측기법의 연구 (Study on Urban Temperature Prediction Method Using Lagrangian Particle Dispersion Model)

  • 김석철;윤정임
    • 한국대기환경학회지
    • /
    • 제33권1호
    • /
    • pp.45-53
    • /
    • 2017
  • A high resolution model is proposed for calculating the temperature field of a large city, based upon a Lagrangian particle model. Utilizing the analogy between the heat and mass transport phenomena in turbulent flows, a Lagrangian particle model, originally developed for air pollutant dispersion problems, is adapted for simulating heat transport. In the model conceptual heat particles are released into the atmosphere from the heat sources and move along with the turbulent winds in accordance with the Markov process. The potential temperature assumed to be conserved along with heat particles serves as a tag, so the temperature fields can be deduced from the distribution of particles. The wind fields are constructed from a diagnostic meteorology model incorporating a morphological model designed for building flows. Test run shows the robustness of the modeling system.

Simulation of the Electrical Response of Charged Particles in the Fluid for Horizontal Switching Electrophoretic Cell

  • Yeo, Jun-Ho;Kim, Sang-Won;Lee, Gi-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.498-501
    • /
    • 2009
  • Electrophoretic displays (EPDs) are attracting considerable attentions as a paper-like display. Especially, Electrophoretic cell consists of micron-sized, charged particles dispersed in a viscous fluid. When an external electric field is applied, the charged particles move with a speed proportional to the particle mobility and the local field strength. In electrophoretic displays fast switching times are required, so knowing the particle mobility is very important. In this paper, we study a novel simulation for calculating the particle motions submerged in a viscous fluid for horizontal switching electrophoretic cell.

  • PDF

CFD 해석을 이용한 Multi Inner Stage Cyclone 내부의 미세입자제거 효율 예측 및 실험적 검증 (Efficiency Prediction of the Particle Removal Efficiency of Multi Inner Stage(MIS) Cyclone by Computational Fluid Dynamics(CFD) Analysis and Experimental Verification)

  • 김혜민;권성안;이상준
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제46차 하계학술발표논문집 20권2호
    • /
    • pp.243-246
    • /
    • 2012
  • A new multi inner stage(MIS) cyclone was designed to remove the acidic gas and minute particles of harmful materials produced from electronic industry. To characterize gas flow in MIS cyclone, pressure and velocity distribution were calculated by means of computational fluid dynamics(CFD) commercial program. Also, the flow locus of particles and particle removal efficiency were analyzed by Lagrangian method. When outlet pressure condition was -1,000 Pa, the efficiency was the best in this study. Based on the CFD simulation result, the pressure loss and destruction removal efficiency was measured through MIS cyclone experiment.

  • PDF

Numerical simulations of elliptic particle suspensions in sliding bi-periodic frames

  • Chung, Hee-Taeg;Kang, Shin-Hyun;Hwang, Wook-Ryol
    • Korea-Australia Rheology Journal
    • /
    • 제17권4호
    • /
    • pp.171-180
    • /
    • 2005
  • We present numerical results for inertialess elliptic particle suspensions in a Newtonian fluid subject to simple shear flow, using the sliding bi-periodic frame concept of Hwang et al. (2004) such that a particulate system with a small number of particles could represent a suspension system containing a large number of particles. We report the motion and configurational change of elliptic particles in simple shear flow and discuss the inter-relationship with the bulk shear stress behaviors through several example problems of a single, two-interacting and ten particle problems in a sliding bi-periodic frame. The main objective is to check the feasibility of the direct simulation method for understanding the relationship between the microstructural evolution and the bulk material behaviors.

Analysis of luminous efficacy of a PDP cell using a hybrid simulation with an electron-fluid and ion-particle model

  • Lee, Hae-June;Shim, Seung-Bo;Song, In-Cheol;Lee, Ho-Jun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.24-27
    • /
    • 2009
  • A hybrid model has been developed which adopts a fluid model for electrons and a particle-in-cell (PIC) model for ions. Using the hybrid simulation, the discharge characteristics are investigated with the diagnostics for the electric field and the wall charge profile, density distributions of charged and excited particles, distributions of ultraviolet lights on phosphor, and the visible lights emitted from the PDP cell. Also, energy and angle distributions of the ions at the MgO protective layer are obtained for the analysis of material effect. The comparison of hybrid simulation results with experimental results as well as that with the conventional fluid simulation shows that the new model is more adequate for the simulation of PDP cells.

  • PDF

Moving particle simulation for a simplified permeability model of pervious concrete

  • Kamalova, Zilola;Hatanaka, Shigemitsu
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.571-578
    • /
    • 2019
  • This study aimed to investigate the permeable nature of pervious concretes (PC) through the moving particle simulation (MPS) method. In the simulation, the complex structure of a pervious concrete was virtually demonstrated as a lattice model (LM) of spherical beads, where the test of permeability was conducted. Results of the simulation were compared with the experimental ones for validation. As a result, MPS results showed the permeability index of the LM as almost twice as big as the actual PCs. A proposed virtual model was created to prevent the stuck of water flow in the MPS simulation of PC or LM. Successful simulation results were demonstrated with the model.

자유표면내 물의 와류효과를 위한 적응적 공기 입자 기법 (Adaptive Air-Particle Method for Vortex Effects of Water in Free Surface)

  • 김종현;이정
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제23권1호
    • /
    • pp.17-24
    • /
    • 2017
  • 미시적인 관점에서 물표면 주위에 위치한 물 입자와 공기 입자는 끊임없이 서로 상호작용을 한다. 이러한 상호작용은 대량의 작은 물 입자들이 엷게 흩날리는 상황이 표현되는 폭포나 바다에서 명확하게 나타난다. 즉, 엷게 퍼진 작은 물 입자들로 인해 물과 공기사이의 표면경계가 불분명해지며 이 부분에서 공기와 물 입자간의 상호작용으로 인해 급격한 와류현상이 나타나게 된다. 그러나 기존 입자 기반 물 시뮬레이션에서는 유동에 의해 나타나는 자기와류 (self-trubulent)에만 집중하였고, 자유표면 근처에서 공기에 의해 표현되는 부차적인 와류 현상에 대해서는 고려하지 못했다. 유체표면의 움직임에 집중된 모델링으로 인해 대량의 작은 물 입자들이 엷게 흩날리는 장면을 사실적으로 연출하기에는 한계가 있다. 우리는 1) 물 표면에서 공기의 역할을 담당하는 공기 입자 층을 적응적으로 생성하고, 2) 물과 공기를 서로 다른 상 (phase)으로 모델링하여 자유표면 근처에서 발생하는 와류를 사실적으로 표현하는 기법을 제안한다. 결과적으로, 우리는 공기에 의해 표현되는 와류를 입자기반 프레임워크에서 효율적으로 다루어 계산속도 및 결과측면에서 기존기법보다 개선된 결과를 얻었다.

전동볼밀을 이용한 금속기반 복합재 제조공정에서 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석 (Particle Morphology Change and Different Experimental Condition Analysis during Composites Fabrication Process by Conventional Ball Mill with Discrete Element Method(DEM) Simulation)

  • 바춘흘루 이치커;보르 암갈란;오양가;이재현;최희규
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.611-622
    • /
    • 2016
  • Particle morphology change and different experimental condition analysis during composite fabrication process by traditional ball milling with discrete element method (DEM) simulation were investigated. A simulation of the three dimensional motion of balls in a traditional ball mill for research on the grinding mechanism was carried out by DEM simulation. We studied the motion of the balls, the ball behavior energy and velocity; the forces acting on the balls were calculated using traditional ball milling as simulated by DEM. The effect of the operational variables such as the rotational speed, ball material and size on the flow velocity, collision force and total impact energy were analyzed. The results showed that increased rotation speed with interaction impact energy between balls and balls, balls and pots and walls and balls. The rotation speed increases with an increase of the impact energy. Experiments were conducted to quantify the grinding performance under the same conditions. Furthermore, the results showed that ball motion affects the particle morphology, which changed from irregular type to plate type with increasing rotation speed. The evolution was also found to depend on the impact energy increase of the grinding media. These findings are useful to understand and optimize the particle motion and grinding behavior of traditional ball mills.

확장된 Maxwell-Wagner 분극 모델에 의한 서로 크기가 다른 입자들로 구성된 이성분계 전기유변 유체의 전산 모사 (Simulation of Bi-dispersed Electrorheological Fluids of Different Particle Sizes by the Extended Maxwell-Wagner Polarization Model)

  • 김영대
    • Korean Chemical Engineering Research
    • /
    • 제60권4호
    • /
    • pp.613-619
    • /
    • 2022
  • 전도성 입자로 제조된 전기유변(Electrorheological) 유체에서 입자 크기 및 서로 다른 크기의 입자들의 혼합이 전기유변 현상에 어떤 영향을 미치는지 살펴보기 위해 Onsager 이론으로 확장된 Maxwell-Wagner 분극 모델을 이용하여 전산 모사를 수행하였다. 전산 모사 결과 입자의 부피 분율이 같은 경우 단일한 크기의 입자로 구성된 균일한 전기유변 유체의 동적 항복응력은 입자 크기에 무관하였고, 크기가 서로 다른 입자들로 혼합된 비균일 전기유변 유체의 동적 항복응력은 균일한 전기유변 유체에 비해 감소하였다. 입자 부피 분율이 같은 경우 ${\dot{\gamma}}^*$≧0.01인 범위에서 큰 입자로 구성된 균일한 전기유변 유체가 작은 입자로 구성된 균일한 전기유변 유체보다 전단응력이 큰 것으로 나타났으며, ${\dot{\gamma}}^*$≧1인 경우에는 전기유변 유체는 큰 입자의 비율이 증가할수록 전단응력이 증가함을 보였다. 모든 입자 크기 및 조성에 대해 전도성 입자로 제조된 전기유변 유체의 특성인 비제곱 전기유변 현상(∆𝛕 ∝ En, n ≈ 1.55)도 예측하였다.

Short-duration Electron Precipitation Studied by Test Particle Simulation

  • Lee, Jaejin;Kim, Kyung-Chan;Lee, Jong-Gil
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권4호
    • /
    • pp.317-325
    • /
    • 2015
  • Energy spectra of electron microbursts from 170 keV to 340 keV have been measured by the solid-state detectors aboard the low-altitude (680 km) polar-orbiting Korean STSAT-1 (Science and Technology SATellite). These measurements have revealed two important characteristics unique to the microbursts: (1) They are produced by a fast-loss cone-filling process in which the interaction time for pitch-angle scattering is less than 50 ms and (2) The e-folding energy of the perpendicular component is larger than that of the parallel component, and the loss cone is not completely filled by electrons. To understand how wave-particle interactions could generate microbursts, we performed a test particle simulation and investigated how the waves scattered electron pitch angles within the timescale required for microburst precipitation. The application of rising-frequency whistler-mode waves to electrons of different energies moving in a dipole magnetic field showed that chorus magnetic wave fields, rather than electric fields, were the main cause of microburst events, which implied that microbursts could be produced by a quasi-adiabatic process. In addition, the simulation results showed that high-energy electrons could resonate with chorus waves at high magnetic latitudes where the loss cone was larger, which might explain the decreased e-folding energy of precipitated microbursts compared to that of trapped electrons.