• Title/Summary/Keyword: particle removal efficiency

Search Result 348, Processing Time 0.026 seconds

Synthesis of Nanoscale Zerovalent Iron Particle and Its Application to Cr(VI) Removal from Aqueous Solutions

  • Awad, Yasser M.;Abdelhafez, Ahmed A.;Ahmad, Mahtab;Lee, Sang-Soo;Kim, Rog-Young;Sung, Jwa-Kyung;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.402-407
    • /
    • 2010
  • Zerovalent iron (ZVI) is one of the most commonly used metallic reducing agents for the treatment of toxic contaminants in wastewater. Traditional ZVIs are less effective than nanoscale ZVI (nZVI) due to prolonged reaction time. However, the reactivity can be significantly increased by reducing the size of ZVI particles to nanoscale. In this study, nZVI particles were synthesized under laboratory condition and their efficiency in removing hexavalent chromium (Cr(VI)) from aqueous solutions were compared with commercially available ZVI particles. The results showed that the synthesized nZVI particles (SnZVI) reduced >99% of Cr(VI) at the application rate of 0.2% (w/v), while commercial nZVI (CnZVI) particles resulted in 59.6% removal of Cr(VI) at the same application rate. Scanning electron micrographs (SEM) and energy dispersive spectra (EDS) of the nZVI particles revealed the formation of Fe-Cr hydroxide complex after reaction. Overall, the SnZVI particles can be used in treating chromium contaminated wastewater.

Application of Electromagnetic Fields to Improve the Removal Rate of Radioactive Corrosion Products

  • Kong, Tae-Young;Lee, Kun-Jai;Song, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.549-558
    • /
    • 2004
  • TTo comply with increasingly strict regulations for protection against radiation exposure, many nuclear power plants have been working ceaselessly to reduce and control both the radiation sources within power plants and the radiation exposure experienced by operational and maintenance personnel. Many research studies have shown that deposits of irradiated corrosion products on the surfaces of coolant systems are the main cause of occupational radiation exposure in nuclear power plant. These corrosion product deposits on the fuel-clad surface are also known to be main factors in the onset of axial offset anomaly (AOA). Hence, there is a great deal of ongoing research on water chermistry and corrosion processes. In this study, a magnetic filter with permanent magnets was devised to remove the corrosion products in the coolant stream by taking advantage of the magnetic properties of the corrosion products demonstrated a removal efficiency of over 90% for particles above 5${\mu}m$. This finding led to the construction of an electromagnetic device that causes the metallic particulates to flocculate into larger aggregates of about 5${\mu}m$ in diameter by using a novel application of electromagnetic flocculation on radioactive corrosion products.

A Study on Biofilter for Hydrogen Sulfide Removal (황화수소 제거를 위한 Biofilter에 관한 연구)

  • Bin, Jeong-In;Lee, Byeong-Heon;Kim, Jung-Gyun;Gwon, Seong-Hyeon;Kim, Sang-Gyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.287-292
    • /
    • 2001
  • A packed bed of volcanic rock was used as deodorizing material to remove hydrogen sulfide($H_2$S) from air in a laboratory-scale column, and was inoculated with Thiobacillus sp. as $H_2S$ oxidizer. The effects of volcanic rock particle size distribution on system pressure drop were examined. Various tests have been conducted to evaluate the effect of $H_2S$ inlet concentration and CBCT(Empty Bed Contact Time) on $H_2S$ elimination. The pressure drop for particles of size range from 5.6 to 10 mm was 14 mm$H_2S$/m at a representative gas velocity of 0.25m/s. Biofilter using scoria and Thiobacillus sp. could get the stable removal efficiencies more than 99.9% under $H_2S$ inlet concentrations in the range from 30 to 1,100ppm at a constant gas flow rate of $15.2{\ell}$/min. $H_2S$ removal efficiencies greater than 99% were observed as long as EBCT was longer than 8sec at the 250ppm of $H_2S$ inlet concentration. When EBCT was reduced to 5.5 sec, $H_2S$ removal efficiency decreased by about 12 percent. The maximum $H_2S$ elimination capacity was determined to be 269g-$H_2S/m^3{\cdot}hr$.

  • PDF

Total Phosphorus Removal Rate of a Subsurface-Flow Wetland System Constructed on Floodplain During Its Initial Operation Stage (고수부지에 조성한 수질정화 여과습지의 초기운영단계 총인 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.6
    • /
    • pp.49-55
    • /
    • 2003
  • Total phosphorous removal rate was examined of a subsurface-flow treatment wetland system which was constructed on floodplain in the down reach of the Kwangju Stream in Korea from May to June 2001. Its dimensions were 29 meter in length, 9 meter in width and 0.65 meter in depth. A bottom layer of 45 cm in depth was filled with crushed granite with about 15~30 mm in diameter and a middle layer of 10 cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds(Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju Stream flowed from a submerged dam into it via a pipe by gravity flow and treated effluent was funneled back into the Stream. The number of reed stems increased from 80 stems/$m^2$ in July 2001 to 136 stems/$m^2$ in September 2001. The hight of stems was 44.2 cm in July 2001 and 75.3 cm in September 2001. The establishment of reeds at early operating stage of the system was good. Volume and water quality of inflow and outflow were investigated from July 2001 through December 2001. The average inflow was 40 $m^3$/day and hydraulic detention time was about 1.5 days. The concentration of total phosphorous n influent and effluent was 0.83 and 0.33 mg/L, respectively. The removal rate of total phosphorous averaged about 60%. The removal efficiency was slightly higher, compared with that of subsurface-flow wetlands operating in North America, whose retention rate of total phosphorous was reported to be about 56%. The good abatement rate could be attributed to sedimentation of particle phosphorous in pores of the media and adsorption of phosphorous to the biofilm developed on the surface of them. Increase of standing density of reeds within a few years will develop root zones which may lead to increment in the phosphorous retention rate.

A Study on the Removal Efficiency of Harmful Pollutants in the Cooking Chamber (조리실내의 유해오염물질 제거율에 관한 연구)

  • Kwon, Woo-Taeg;Lee, Woo-Sik
    • Culinary science and hospitality research
    • /
    • v.22 no.8
    • /
    • pp.149-156
    • /
    • 2016
  • The purpose of this study is to reduce the contaminants (total volatile organic compounds (TVOCs), fine particle, odor and total airborne bacteria) during cooking process in cooking chamber, and to decrease the health damage in indoor space that has bad work environment. In order to solve the shortcomings of existing air purifiers and remove all kinds of pollutants effectively, this study focused on the development of indoor air purifiers which are made of bar type. Bio-ceramics filter which combines activated carbon and loess. The air cleaners developed with 4 measuring items including TVOCs, particulate matter, complex odor and total airborne bacteria were measured comparing their pre-service test to their post-service test after a period of time. The measured results showed higher removal efficiency of 91.02% as the concentration of TVOCs was reduced from $2,500{\mu}g/m^3$ to $223{\mu}g/m^3$. Second, the particulate matter removal ratio was 97.51% efficient with average concentration of $26.68{\mu}g/m^3$. Third, the odor showed 95.20% reduction as air dilution ratio averaged out at 144. Last, total airborne bacteria was eliminated by over 94% showing the changeable concentration from $787{\sim}814CFU/m^3$ to $47{\sim}40CFU/m^3$. In addition, the removal rate of harmful pollutants is excellent, and it is expected that the environment of the existing poor cooking room will be greatly improved by using the developed air purifier in combination with the ventilation device and the stove hood.

The Fundamental Study on th e Soil Remediation for Copper Contaminated Soil using Nanobubble Water (나노버블수에 의한 구리 오염 토양의 정화에 관한 기초 연구)

  • Jeong, So-Hee;Kim, Dong-Chan;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.31-39
    • /
    • 2017
  • The fundamental study for an application of nanobubble as a soil remediation enhancer on heavy metal contaminated soil was carried out. The existence and long-term stability of hydrogen nanobubbles were investigated by particle analysis and zeta-potential analysis. And the removal efficiency of copper using nanobubble water(NBW) and distilled water(DW) were compared and analyzed through a batch desorption test. As a result, it is confirmed that nanobubble which was fabricated by compression-dissolution type generator can exist for more than 14 days. The results of batch test show that copper removal of NBW was higher than that of DW irrespectively to soil type and increased as solid-liquid ratio and contact time increased, respectively. According to the pH change, the removal of copper on sand was higher on the acid side but the removal difference was slightly lower on the clay. It is considered that a high efficiency of NBW in copper removal is due to the large surface area and high zeta-potential of nanobubbles. Therefore, the nanobubble can be applied to soil remediation for heavy-metal contaminated soil as an eco-friendly enhancer.

A Study on the Removal of Cu and Fe Impurities on Si Substrate (Si 기판에서 구리와 철 금속불순물의 제거에 대한 연구)

  • Choi, Baik-Il;Jeon, Hyeong-Tag
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.837-842
    • /
    • 1998
  • As the size of the integrated circuit is scaled down the importance of Si cleaning has been emphasized. One of the major concerns is abut the removal of metallic impurities such as Cu and Fe on Si surface. In this study, we intentionally contaminated Cu and Fe on the Si wafers and cleaned the wafer by cleaning splits of the chemical mixture of $\textrm{H}_2\textrm{O}_2$ and HF and the combination of HF treatment with UV/$\textrm{O}_3$ treatment. The contamination level was monitored by TXRF. Surface microroughness of the Si wafers was measured by AFM. The Si wafer surface was examined by SEM. AES analysis was carried out to analyze the chemical composition of Cu impurities. The amount of Cu impurities after intentional contamination was abut the level of $\textrm{10}^{14}$ atoms/$\textrm{cm}^2$. The amount of Cu was decreased down to the level of $\textrm{10}^{10}$ atoms/$\textrm{cm}^2$ by cleaning splits. The repeated treatment exhibited better Cu removal efficiency. The surface roughness caused by contamination and removal of Cu was improved by repeated treatment of the cleaning splits. Cu were adsorbed on Si surface not in a thin film type but in a particle type and its diameter was abut 100-400${\AA}$ and its height was 30-100${\AA}$. Cu was contaminated on Si surface by chemical adsorption. In the case of Fe the contamination level was $\textrm{10}^{13}$ atoms/$\textrm{cm}^2$ and showed similar results of above Cu cleaning. Fe was contaminated on Si surface by physical adsorption and as a particle type.

  • PDF

Characteristics of particulate matter collection efficiency and ozone emission rate of an electrostatic precipitator by thickness of high-voltage electrode and distance of collection plates (고전압 전극 두께와 집진판 간격에 따른 전기집진기의 미세먼지 집진효율 및 오존발생 특성)

  • Lee, Jae-In;Woo, Sang-Hee;Kim, Jong Bum;Lee, Seung-Bok;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.171-180
    • /
    • 2018
  • To optimize the shape of the electrostatic precipitator for the removal of particulate matter in subway environments, the wind-tunnel experiments were carried out to characterize collection efficiency and ozone emission rate. As a standardized parameter, power consumption divided by the square of flow velocity, was increased, the $PM_{10}$ collection efficiency increased. If the standardized parameter is higher than 1.0 due to high power consumption or low flow velocity, increase in thickness of electrodes from 1 to 2 mm, or increase in distance of collection plates from 5 to 10 cm did not change the $PM_{10}$ collection efficiency much. Increase in thickness of high-voltage electrodes, however, can cause decrease in $PM_{10}$ collection efficiency by 28% for low power consumption and high flow velocity. The ozone emission rate decreased as distance of collection plates became wider, because the ozone emission rate per unit channel was constant, and the number of collection channels decreased as the distance of collection plates increased. When the distance of collection plates was narrow, the ozone emission rate increased with the increase of the thickness of electrodes, but the difference was negligible when the distance of collection plates was wide. It was found that the electrostatic precipitator having a thin high-voltage electrodes and a narrow distance of collection plates is advantageous. However, to increase the thickness of high-voltage electrodes, or to increase the distance of collection plates is needed, it is necessary to increase the applied voltage or reduce the flow rate to compensate reduction of the collection efficiency.

Application of ASM and PHOENICS for Optimal Operation of Wastewater Treatment Plant (하수처리장 운영의 최적화를 위한 ASM, PHOENICS의 적용)

  • Kim, Joon Hyun;Han, Mi-Duck;Han, Yung Han
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.73-82
    • /
    • 2000
  • This study was implemented to find an optimal model for wastewater treatment processes using PHOENICS(Parabolic, hyperbolic or Elliptic Numerical Integration Code Series) and ASM(Activated Sludge Model). PHOENICS is a general software based upon the laws of physics and chemistry which govern the motion of fluids, the stresses and strains in solids, heat flow, diffusion, and chemical reaction. The wastewater flow and removal efficiency of particle in two phase system of a grit chamber in wastewater treatment plant were analyzed to inquire the predictive aspect of the operational model. ASM was developed for a biokinetic model based upon material balance in complex activated sludge systems, which can demonstrate dynamic and spatial behavior of biological treatment system. This model was applied to aeration tank and settling chamber in Choonchun city, and the modeling result shows dynamic transport in aeration tank. PHOENCS and ASM could be contributed for the optimal operation of wastewater treatment plant.

  • PDF

밀폐된 공간에서 환기에 의한 ETS 성분 제거

  • 황건중;이문수;나도영
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.1
    • /
    • pp.102-108
    • /
    • 1999
  • This study was conducted to evaluate the ventilation to remove gases, vapor and particles of environmental tobacco smoke(ETS) in a closed room. The ventilation rate choosed were 0.445 ㎥/min, 0.528 ㎥/min, and 0.625 ㎥/min. ETS components measured were total suspended particle(TSP), ultraviolet particulate matter(UVPM), fluorescent particulate matter(FPM), solanesol, carbon dioxide($CO_2$), carbon monoxide(CO), nicotine, and 3-ethenylpyri-dine(3-EP). The concentration of ETS components measured rapidly decreased as increasing ventilation rate, but the removal efficiency by ventilation was different from each ETS compounds. The $CO_2$, and CO, gaseous components of ETS, were dominant components to be removed from the room by ventilation. The ventilation with 0.528 ㎥/min for 1 hr was enough to remove over 99% of those gaseous components. Nicotine and 3-EP needed the ventilation for 2 hrs to reduce over 95 % of those components. As the same ventilation rate, 99 % of TSP and solanesol concentration were removed from the room within 2 hrs, UVPM and FPM concentration decreased 90 %.

  • PDF