• Title/Summary/Keyword: particle motion

Search Result 462, Processing Time 0.027 seconds

Pressure Drop Characteristics of Air Particle Flow in Powder Transport Piping System (파우더 수송시스템의 공기입자 유동 압력강하 특성)

  • Kim, Jong-Soon;Chung, Sung-Won;Kwon, Soon-Gu;Park, Jong-Min;Choi, Won-Sik;Kwon, Soon-Hong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.157-168
    • /
    • 2017
  • The pressure drop characteristics of air particle flow in a powder transport piping system were analyzed in this study. The pressure drop characteristics of air particle flow in the piping system have not well understood due to the complexibility of particle motion mechanism. Particles or powders suspended in the air flow cause the increase of the pressure drop and affect directly transport efficiency. In this study, the pressure drop in a powder transport piping system was analyzed with interactions of air flow and particle motion in straight and curved pipes. The total pressure drop increased with pipe length, mixture ratio, and friction factor of particles because of increased friction loss of air and particles in the piping system. For the coal powders of $74{\mu}msize$ and powder-to-air mass mixture ratio of 0.667, the total pressure drop under the consideration of powders and air flow was calculated as much as 30% higher than that air flow only.

A Study on the Development of a 2-axis Stage with Sequence Control for Micro Particle Blast Machining (미세입자 분사가공용 시퀸스 제어가 가능한 2축 스테이지 개발에 관한 연구)

  • Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.81-87
    • /
    • 2020
  • A stable rotational-to-linear motion transformation structure using a driving mechanism with 2 degrees of freedom was developed for an orthogonal mechanism to prevent the interference of each axis in 2D motion. In this mechanism, a step motor was used for precise position control. This structure was developed to maneuver workparts in micro particle blast machining experiments. To determine the real-time performance of micro particle blast machining, the control, input, and output were operated simultaneously and precise position control was implemented, using a timer interrupt with multiple execution codes. The two step motors obtained precise position control by removing backlash with a ball-screw mechanism. The device has menu-type control codes for user-friendliness, and real-time sequence control was simultaneously adopted for user control input.

Experimental studies on the axisymmetric sphere-wall interaction in Newtonian and non-Newtonian fluids

  • Lee, Sang-Wang;Sohn, Sun-Mo;Ryu, Seung-Hee;Kim, Chongyoup;Song, Ki-Won
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.3
    • /
    • pp.141-148
    • /
    • 2001
  • In this research, experimental studies leave been performed on the hydrodynamic interaction between a spherical particle and a plane wall by measuring the force between the particle and wall. To approach the system as a resistance problem, a servo-driving system was set-up by assembling a microstepping motor, a ball screw and a linear motion guide for the particle motion. Glycerin and dilute solution of polyacrylamide in glycerin were used as Newtonian and non-Newtonian fluids, respectively. The polymer solution behaves like a Boger fluid when the concentration is 1,000 ppm or less. The experimental results were compared with the asymptotic solution of Stokes equation. The result shows that fluid inertia plays all important role in the particle-wall interaction in Newtonian fluid. This implies that the motion of two particles in suspension is not reversible even in Newtonian fluid. In non-Newtonian fluid, normal stress difference and viscoelasticity play important roles as expected. In the dilute solution weak shear thinning and the migration of polymer molecules in the inhomogeneous flow field also affect the physic of the problem.

  • PDF

Migration of a heavy particle in uniform shear flow (전단유동에서 입자의 운동)

  • Cho, Seong-Gee;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1903-1908
    • /
    • 2003
  • The motion of a small, heavy rigid particle in the shear flow on a stationary wall is investigated in the context of Stokes flow. The lift force proposed by Saffman(1965) and later modified by Mclaughlin(1991) and Mei(1992) is considered in the prediction of the particle motion far away from the wall. Later, the expression of the lift force is modified to take into account the effect of wall(Cherukat and Mclaughlin, 1994). In the analysis the gravity and buoyancy effect are also taken into account. An analytical and numerical results for the terminal velocities and trajectories of the particle after the enough lapse of time are presented.

  • PDF

Simulation of Vessel Motion Control by Anti-Rolling Tank (능동형 횡동요 저감 장치를 이용한 선박운동제어 시뮬레이션)

  • Kim, Kyung Sung;Lee, Byung-Hyuk
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.440-446
    • /
    • 2018
  • The effects of an anti-rolling tank (ART) on vessel motions were numerically investigated. The potential-based BEM vessel motion simulation program and particle-based computational fluid dynamics program were dynamically coupled and used to perform a simulation of vessel motions with ART. From the time domain simulation results, the response amplitude operators for sway and roll motions were obtained and compared with the corresponding experimental and numerical results. Because the main purpose of ART was only to reduce roll motions, it was important to show that the natural properties of a floating vessel were not changed by the effects of ART. Various ART filling ratios and several ART positions were considered. In conclusion, ART only reduced the roll motion regardless of its filling ratio and position.

Improvement of Tracking Performance of Particle Filter in Low Frame Rate Video (낮은 프레임률 영상에서 파티클 필터의 추적 성능 개선)

  • Song, Jong-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.143-148
    • /
    • 2014
  • Particle filter algorithm has been proven very successful for non-linear and non-Gaussian estimation problem and thus it has been widely used for object tracking for video signals. If the object moves significantly, particle filter needs very large number of particles to track object and this results high computational cost. In this paper, modified particle filter by adopting motion vector is proposed for tracking vehicle in low frame rate(LPR) video input, which the object moving significantly and randomly between consecutive frames. In the proposed algorithm, motion vector is applied in selection and observe step. The experimental result shows that the proposed particle filter can track vehicle successfully in the case when previous one fails. And it also shows the propose method increases the precision of tracking.

Motion Characteristics of Particle in Model GIS (모의 GIS내 금속이물의 거동특성)

  • 김경화;이재걸;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.152-159
    • /
    • 1999
  • This paper describes the rmtion characteristics of a particle in GIS under AC voltage. To measure the motion characteristics of the particle, a model gas chamber and parallel plain electrodes were designed and manufactured lift-off voltages of wire and spherical particles on the electrode were calculated and rreasured, and electric charge was calculated. By using a high speed carrera, the rmtion characteristics of various particles with aw}ied voltages, such as motion pattern, lift-off time, lift-off height, were analyzed 1be lift-off voltages were greatly affected by diarreters of wire and spherical particles. At voltage around lift-off voltage, the stand-up particle in vertical state rmved up and down between electrodes and the height of the lift-off particle was low. At voltage around breakdown voltage, the particle repeated vertical rotation a few times while they were being lifted off, and then, they were floating between the electrodes.trodes.

  • PDF

Modification of Particle Dispersion in Isotropic Turbulence by Free Rotation of Particle (등방성 난류에서 입자의 회전에 의한 분산 특성의 변화)

  • Park, Yong-Nam;Lee, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.665-670
    • /
    • 2010
  • The effect of a particle's spin is investigated numerically by taking into account the effect of lift forces originating due to difference between the rotations of a particle and of a fluid, such as the Saffman and Magnus lift forces. These lift forces have been ignored in many previous studies on particle-laden turbulence. The trajectory of the particles can be changed by the lift forces, resulting in a significant modification of the stochastic characteristics of heavy particles. Probability density functions and autocorrelations are evaluated from the velocity of solid particle, acceleration of solid particles, and acceleration of fluid at the position of solid particle. Changes in velocity statistics are negligible but statistics related with acceleration are affected by the rotation of particle. When a laden particle encounters coherent structures during its motion, the particle's rotation might significantly affects the motion due to intermittently large fluid acceleration near the coherent structures.

Lagrangian Simulation Model of Heavy Particle Motion in a Turbulent Flow (라그랑지 관점에 입각한 난류유동장 내의 관성입자운동 모사 모델)

  • Moon, Sun;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.241-251
    • /
    • 1991
  • The present simulation model relies on a new approach of the heavy particle motion in a turbulent flow considering the time and space correlation to the Lagrangian point of view. The turbulent field is, here, assumed that its characteristic scales are random and follow a Poisson's distribution. Using this model, we have computed the trajectory of each particle, that is, its velocity and position at each time in order to study the dispersion of particles in a grid turbulent flow. The computed results have been compared to the corresponding experimental data. Due to the complex mechanism of turbulence and the theoretically and experimentally lacking information, we had to make some assumptions for simplifying the situation, but we have found the good agreement between simulated and measured results. In particular, the application of the present method on the Lagrangian correlation of particle provides an interesting alternative to the usual computational methods.