• 제목/요약/키워드: particle mean diameter

검색결과 291건 처리시간 0.023초

입자크기와 노즐형상이 입자유동특성에 미치는 영향 (Effects of Particle Size and Injector Geometry on Particle Dynamics)

  • 전운학;김종철;황승식
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.97-103
    • /
    • 1998
  • The flow structure of particles for two different injectors has been investigated experimentally by means of a Phase Doppler Particle Analyzer(PDPA). Two injectors used in the present study are the pipe and contraction nozzle. Particles of 0.8${\mu}{\textrm}{m}$, 30${\mu}{\textrm}{m}$, 60 ${\mu}{\textrm}{m}$, and 100${\mu}{\textrm}{m}$ diameter were injected with a constant mass loading ratio of 0.01 and a Reynolds number of 13200. The initial mean velocity and turbulent intensity of particle are strongly influenced by the particle size and the injector geometry. The flow angles of particle at nozzle exit are sensitive to the particle size rather than the injector geometry.

  • PDF

PDPA계측에 의한 다공 디젤 노즐의 분무 미립화 특성에 관한 연구 (A Study on the Spray Atomization Characteristics of a Multi-Hole Diesel Nozzle using PDPA System)

  • 이지근;오제하;강신재;노병준
    • 한국분무공학회지
    • /
    • 제4권1호
    • /
    • pp.45-54
    • /
    • 1999
  • The spray characteristics of a direct injection multi-hole diesel nozzle having the 2-spring nozzle holder were investigated by using the image processing system and a PDPA(phase Bowler particle analyzer) system. The spray tip penetration, the spray angle, and the droplet diameter and velocity with the variation of the pump speed, injection quantity were measured. From, the experiments, we know that there are small droplets which are not to be detected with spray image around the leading edge of the spray. In order to represent the mean characteristics of the intermittent spray very well, it is very important to set the time windows accurately. From the measurements along the axis of the spray, close to the nozzle, the initially injected droplets are overtaken by droplets that follow them. And also there are the maximum axial mean velocity and SMD at the following part of the leading edge of the spray.

  • PDF

전기가열 튜브로를 이용한 나노/서브마이크론 입자의 발생 (Generation of Nano/Submicron Particles Using an Electrically Heated Tube Furnace)

  • 지준호;배양일;황정호;배귀남
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1734-1743
    • /
    • 2003
  • Aerosol generator using an electrically heated tube furnace is a stable apparatus to supply nanometer sized aerosols by using the evaporation and condensation processes. Using this method, we can generate highly concentrated polydisperse aerosols with relatively narrow size distribution. In this work, characteristics of particle size distribution, generated from a tube furnace, were experimentally investigated. We evaluated effects of several operation parameters on particle generation: temperature in the tube furnace, air flow rates through the tube, size of boat containing solid sodium chloride(NaCl). As the temperature increased, the geometric mean diameter increased and the total number concentration also increased. Dilution with air affected the size distribution of the particles due to coagulation. A smaller sized boat, which has small surface area to contact with air, brings smaller particles of narrow size distribution in comparison of that of a larger boat. Finally, we changed the electrical mobility diameter of aggregate sodium chloride particles by varying relative humidity of dilution air, and obtained non-aggregate sodium chloride particles, which are easy to generate exact monodisperse particles.

석탄유동층연소로에서 분진 발생 및 배출 특성 (Elutriation and Production of Fines in a Fluidized Bed Coal Combustor)

  • 장현태;이종일
    • 한국안전학회지
    • /
    • 제11권2호
    • /
    • pp.96-101
    • /
    • 1996
  • The effects of coal type and mixing fraction of coal on attrition and elutriation were studied in a 15. 5cm diameter fluidized bed coal combustor. The domestic low-grade anthracite coal with heating value 2010kcal/kg and the imported bituminous coal from Australia with heating value of 6520kcal/kg were used as coal sample. It was found from the experimental that the elutriation rate inclosed with an increseing anthracite mixing fraction. The size of elutriated particle had a very wide distribution was found in this experiment. The mean size of elutriated particle increased with decreaseing anthracite mixing fraction.

  • PDF

카드뮴의 흡입독성 연구를 위해 설계된 에어로졸 발생장치에서 발생된 카드뮴 에어로졸의 입경분석(766ppm 카드뮴 네뷸라이징 용액) (Particle Size Analysis of Cadmium Aerosol for Cadmium Inhalation Toxicology Study (766ppm Cadmium Nebulizing Solution))

  • 정재열;도날드밀턴;김태형;이종영;장두섭;강성호;송용선;이기남
    • 동의생리병리학회지
    • /
    • 제16권5호
    • /
    • pp.1035-1041
    • /
    • 2002
  • Ultrasonic nebulizer with the application of new engineering methodology and the design of electronic circuit and 766ppm Cd nebulizing solution were used to generate cadmium aerosol for inhalation toxicology study. The results of particle size analysis for cadmium aerosol were as following. The highest particle counting for source temperature 20℃ was 43.449 x 10³ in inlet temperature 250℃ and particle diameter 0.75㎛. The highest particle counting for source temperature 50℃ was 43.211 x 10³ in inlet temperature 100 ℃ and particle diameter 0.75㎛. The highest particle counting for source temperature 70℃ was 41.917x10³ in inlet temperature 250℃ and particle diameter 0.75㎛. The ranges of geometric mean diameter(GMD) were 0.677-1.009㎛ in source temperature 20℃, 0.716-0.963㎛ in source temperature 50℃, and 0.724-0.957㎛ in source temperature 70℃. The smallest GMD was 0.677㎛ in source temperature 20℃ and inlet temperature 20℃. and the largest GMD was 1.009㎛ in source temperature 20℃ and inlet temperature 20℃. The ranges of geometric standard deviation(GSD) were 1.635-2.101 in source temperature 20℃. 1.676-2.073 in source temperature 50℃, and 1.687-2.051 in source temperature 70℃. The lowest GSD was 1.635 in source temperature 20℃ and inlet temperature 20℃, and the highest GSD was 2.101 in source temperature 20℃ and inlet temperature 200℃. Aerosol generated for cadmium inhalation toxicology study was polydisperse aerosol. The ranges of mass median diameter(MMD) were 1.399-5.270㎛ in source temperature 20℃. 1.593-4.742㎛ in source temperature 50℃, and 1.644-4.504㎛ in source temperature 70℃. The smallest MMD was 1.399㎛ in source temperature 20℃ and inlet temperature 20℃, and the largest MMD was 5.270㎛ in source temperature 20℃ and inlet temperature 200℃. Increasing trends for GMD, GSD, and MMD were observed with same source temperature and increase of inlet temperature. MMD for inhalation toxicology testing in EPA guidance is less than 4㎛. In our results. inlet temperature 20 and 50℃ in source temperature 20℃, and inlet temperature 20 to 150℃ in source temperature 50 and 70℃ were conformed to the EPA guidance. MMD for inhalation toxicology testing in OECD and EU is less than 3㎛. In our results, inlet temperature 20 and 50℃ in source temperature 20, 50, and 70℃ were conformed to the OECD and EU guidance.

흡입독성 연구를 위한 2730ppm 납 네뷸라이징 용액에서 발생된 에어로졸의 입경분석 (Particle Size Analysis of Lead Aerosol with the use of 2730ppm Lead Nebulizing Solution for Inhalation Toxicology Study)

  • 정재열;강성호;김삼태;이은경;송용선;이기남
    • 동의생리병리학회지
    • /
    • 제17권2호
    • /
    • pp.518-524
    • /
    • 2003
  • Ultrasonic nebulizer with the application of new engineering methodology and the design of electronic circuit was made for lead inhalation toxicology study and 2730ppm lead nebulizing solution was used to generate lead aerosol. After modification of source and inlet temperatures, the results of particle size analysis for lead aerosol were as following. The highest particle counting for source temperature 20℃ was 39933.66 in inlet temperature 100℃ and particle diameter 0.75tLm. The highest particle counting for source temperature 50℃ was 39992.71 in inlet temperature 250℃ and particle diameter 0.75μm. The highest particle counting for source temperature 70℃ was 37569.55 in inlet temperature 50℃ and particle diameter 0.75μm. The ranges of geometric mean diameter(GMD) were 0.754-0.784μm for source temperature 2℃, 0.758-0.852μm for source temperature 50℃, and 0.869-1.060μm for source temperature 70℃. The smallest GMD was 0.754μm in source temperature 20℃ and inlet temperature 20℃, and the largest GMD was 1.060μm in source temperature 70℃ and inlet temperature 250℃. The ranges of geometric standard deviation(GSD) were 1.730-1.782 for source temperature 20℃, 1.734-1.894 for source temperature 50℃, and 1.921-2.148 for source temperature 70℃. The lowest GSD was 1.730 in source temperature 20℃ and inlet temperature 20℃, and the highest GSD was 2.148 in source temperature 70℃ and inlet temperature 250℃. Lead aerosol generated in this study was polydisperse. The ranges of mass median diameter(MMD) were 1.856-2.133μm for source temperature 20℃, 1.877-2.894μm for source temperature 50℃, and 3.120-6.109μm for source temperature 70℃. The smallest MMD was 1.856μm in source temperature 20℃ and inlet temperature 20℃, and the largest MMD was 6.109μm in source temperature 70℃ and inlet temperature 250℃. Slight increases for GMD, GSD, and MMD values were observed with same source temperature and increase of inlet temperature. MMD for inhalation toxicology testing in EPA guidance is less than 4μm. In this study, source temperature 20℃ and 50℃ with inlet temperature from 20℃ to 250℃ were conformed to the EPA guidance, but inlet temperature 20℃ and 50℃ for source temperature 70℃ were conformed EPA guidance. MMD for inhalation toxicology testing in OECD and EU is less than 3μm. In this study, source temperature 20℃ and 50℃ with inlet temperature from 20℃ to 250℃ were conformed to the EPA guidance, but none for source temperature 70℃.

가솔린 직분식 엔진 인젝터의 연료 분무 미립화 특성 (Atomization Characteristics of Fuel Spray in Fuel Injector in Gasoline Direct-Injection Engine)

  • 이창식;이기형;최수천;권상일
    • 한국분무공학회지
    • /
    • 제4권2호
    • /
    • pp.33-39
    • /
    • 1999
  • This paper presents the spray atomization characteristics of the high-pressure gasoline injector for the direct-injection gasoline engine. The gasoline sprays of the injector were minted into a pressurized spray chamber with a optical access at various ambient pressures. The atomization characteristics of fuel spray such as mean diameter, mean velocity of droplet were measured by the phase Doppler particle analyzer system. In order to investigate the effect of fuel injection pressure on the quantitative characteristics of spray, the global visualization and experiment of particle measurement in the fuel spray were investigated at 3, 5 and 7 MPa of injection pressure under different ambient pressure in the spray chamber. Based on the results of this work, the fuel injection pressure of fuel injector in gasoline direct-injection engine have influence upon distribution of the mean velocity and droplet size of fuel spray. Also, the influence of injection pressure on the velocity distribution at various measuring location were investigated.

  • PDF

포트 분사 연료 인젝터의 분무 구조에 관한 연구 (An Study on the Spray Structure of Fuel Port Injectors)

  • 이창식;이기형;전문수;손강호;박종순
    • 한국분무공학회지
    • /
    • 제3권3호
    • /
    • pp.42-48
    • /
    • 1998
  • This study describes the spray structure of gasoline port injectors by using phase Doppler particle analyzer(PDPA) and particle motion analysis system(PMAS). The characteristics of fuel spray such as the spray penetration, spray angle and breakup processes were obtained by PMAS and the droplet size and mean velocity were measured by PDPA system. Pintle type and two-hole type injectors were used as gasoline port fuel injectors under various injection pressures. The effect of injection pressure on the droplet mean diameter and axial mean velocity of droplet were investigated under the various injection conditions. In addition the comparison of breakup processes for the two types of injectors was also conducted. It Is shown that pintle type injector has smaller droplet size than that of two-hole type injector.

  • PDF

黃砂現象이 우리나라에 미치는 影響 (Yellow Sand Phenomena Influence to the Atmosphere in Korea)

  • 이민희;한의정;원양수
    • 한국대기환경학회지
    • /
    • 제2권3호
    • /
    • pp.34-44
    • /
    • 1986
  • Particle size distribution of airborne suspended particulate concentrations according to particle size in the events of yellow sand phenomena, have been measured and analyzed by using Andersen air sampler for four years, January 1982 through December 1985. The conclusions are as follows: 1. Yellow sand phenomena, generally, occur between March and May. 2. The frequent occurrences of yellow sand were observed during March and April and airborne suspended particulate concentrations in the cases of yellow sand appeared to be 2 $\sim$ 3.4 times higher than those of normal conditions. 3. Geometric mean particle diameter and its geometric mean standard deviation by logarithmic normal distribution sheet, were quite close to each other and log-distribution curves showed similar shapes. 4. Analysis by particle size distribution curve showed bi-modal distribution. 5. Concentrations of coarse particles in normal conditions were 1.2 $\sim$ 2 times higher than those of fine particles and, similarly, coarse particle concentrations in yellow sand cases were 1.3 $\sim$ 2.5 times higher than those of fine particles. 6. Concentrations of coarse particles in yellow sand cases were 2 $\sim$ 3.6 times higher than those in normal conditions and those of fine particles were 1.7 $\sim$ 3.5 times higher.

  • PDF

Wafer Surface Scanner를 이용한 반도체 웨이퍼상의 입자 침착속도의 측정 (Measurement of Particle Deposition Velocity toward a Horizontal Semiconductor Wafer Using a Wafer Surface Scanner)

  • 배귀남;박승오;이춘식;명현국;신흥태
    • 설비공학논문집
    • /
    • 제5권2호
    • /
    • pp.130-140
    • /
    • 1993
  • Average particle deposition velocity toward a horizontal semiconductor wafer in vertical airflow is measured by a wafer surface scanner(PMS SAS-3600). Use of wafer surface scanner requires very short exposure time normally ranging from 10 to 30 minutes, and hence makes repetition of experiment much easier. Polystyrene latex (PSL) spheres of diameter between 0.2 and $1.0{\mu}m$ are used. The present range of particle sizes is very important in controlling particle deposition on a wafer surface in industrial applications. For the present experiment, convection, diffusion, and sedimentation comprise important agents for deposition mechanisms. To investigate confidence interval of experimental data, mean and standard deviation of average deposition velocities are obtained from more than ten data set for each PSL sphere size. It is found that the distribution of mean of average deposition velocities from the measurement agrees well with the predictions of Liu and Ahn(1987) and Emi et al.(1989).

  • PDF