• 제목/요약/키워드: particle flow code (PFC)

검색결과 61건 처리시간 0.023초

입자 유동 해석(PFC)을 통한 근접터널의 거동에 관한 연구 (A Study on the Behavior of a Closely-spaced Tunnel by Using Particle Flow Code)

  • 서병욱;조선아;정선아;이석원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.159-169
    • /
    • 2008
  • In general, it is considered that a pillar between closely-spaced tunnel is sensitive for stress concentration. Stability of a pillar is key factor for excavation of closely-spaced tunnel. In this paper, the study is focused on tracing the behaviors, displacement and plotting damages around tunnels that is modelled with Particle Flow Code, $PFC^{2D}$. Parametric study was performed with changing distance between center of tunnels and coefficient of earth pressure(K). Scaled-model tests were also carried out to validate a numerical analysis model. It was found that $PFC^{2D}$ could show dynamic visualized result in quite good agreement with the experimental test.

  • PDF

PFC를 이용한 입자 형상에 따른 입자 파쇄 및 전단거동 전개 (Evolution of Particle Crushing and Shear Behavior with Respect to Particle Shape Using PFC)

  • 조선아;조계춘;이석원
    • 한국지반공학회논문집
    • /
    • 제25권10호
    • /
    • pp.41-53
    • /
    • 2009
  • 조립재료의 입자 형상이 입자 파쇄 전개 및 전단 거동 특성에 미치는 영향을 분석하기 위하여, 개별요소법(DEM, discrete element method)을 이용하여 직접전단시험을 수치해석적으로 모델링하였다. PFC(Particle Flow Code)내의 clump 모델 및 cluster 모델을 이용하여 6가지 형상의 입자를 생성하여 이를 원형입자의 직접 전단거동과 비교 분석함으로써 입자형상의 영향을 연구하였다. 연구결과, PFC에 의해 모델링된 직접 전단모델의 수치해석 결과는 실내 실험결과와 잘 일치하였으며, 따라서 본 연구 결과의 타당성을 입증하였다. 입자 형상 관점에서 모나고 거친 입자의 내부마찰각이 상대적으로 둥글고 매끄러운 입자에 비해 큰 값을 나타냈으며, 입자 파쇄 또한 많이 발생하는 것을 확인하였다. 이때 입자파쇄는 전단면근처에 집중되며 전단대를 형성하였다. 따라서 본 연구에서 제시한 수치해석 모델은 향후입자 파쇄를 포함한 조립재료의 전단강도 특성 연구에 다양하게 적용될 수 있다고 판단된다.

입자 결합 및 파쇄 형태에 따른 전단거동 특성 (Characteristics of Shear Behavior According to State of Particle Bonding and Crushing)

  • 정선아;김은경;이석원
    • 한국지반신소재학회논문집
    • /
    • 제10권2호
    • /
    • pp.1-12
    • /
    • 2011
  • 조립재료의 입자 결합 및 파쇄 형태가 전단거동 특히 잔류 전단거동 특성에 미치는 영향을 분석하기 위하여, 개별요소법(DEM, discrete element method)에 기초를 둔 프로그램인 PFC(Particle Flow Code)를 이용하여 링 전단시험을 수치해석적으로 모델링하였다. 본 연구에서는 PFC내의 clump 모델 및 cluster 모델을 이용하여 두 개의 비파쇄모델 그리고 두 개의 파쇄모델을 포함한 총 네 개의 모델을 제시하였다. Lobo-Guerrero and Vallejo(2005)가 제안한 Lobo-crushing 모델의 적합성을 검토하였다. 또한 링 전단시험 모델링의 결과 분석을 통하여 직접전단시험 모델링 결과와 비교하였다. 연구 결과, 잔류 전단거동 분석을 위해서는 링 전단시험의 모델링이 필수적임을 알 수 있었다. 또한 잔류 전단강도 분석을 위해서는 Lobo-crushing 모델이 부적합함을 알 수 있었다. 따라서 본 연구에서 제시한 수치해석 모델은 향후 입자 파쇄를 포함한 조립재료의 잔류 전단강도 특성 연구에 다양하게 적용될 수 있다고 판단된다.

입자결합모델을 이용한 동적콘관입시험(DCPT)의 수치해석 모델링에 관한 연구 (A Study on Numerical Modeling of Dynamic CPT using Particle Flow Code)

  • 유광호;이창수;최준성
    • 한국도로학회논문집
    • /
    • 제16권2호
    • /
    • pp.43-52
    • /
    • 2014
  • PURPOSES : To solve problems in current compaction control DCPT(Dynamic Cone Penetrometer Test), highly correlated with various testing methods, simple, and economic is being applied. However, it、s hard to utilize DCPT results due to the few numerical analyses for DCPT have been performed and the lack of data accumulation. Therefore, this study tried to verify the validation of numerical modeling for DCPT by comparing and analyzing the results of numerical analyses with field tests. METHODS: The ground elastic modulus and PR(Penetration Rate) value were estimated by using PFC(Particle Flow Code) 3D program based on the discrete element method. Those values were compared and analyzed with the result of field tests. Also, back analysis was conducted to describe ground elastic modulus of field tests. RESULTS : Relative errors of PR value between the numerical analyses and field tests were calculated to be comparatively low. Also, the relationship between elastic modulus and PR value turned out to be similar. CONCLUSIONS : Numerical modeling of DCPT is considered to be suitable for describing field tests by carrying out numerical analysis using PFC 3D program.

The numerical investigation of tensile strength of coal model on the performance of coal plow using Particle Flow Code

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi;Li, Tong
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.713-724
    • /
    • 2022
  • Effects of coal tensile strength and plow configuration on the coal fragmentation process was modeled by two-dimensional particles flow code (PFC2D). Three tensile strength values, 0.5, 1,5 and 3.5 MPa were considered in this numerical study. The cutters of plow penetrated in the coal for 4 mm at a rate of 0.016 m/s. According to the PFC manual, the local damping factor was 0.7. Three failure mechanism of coal during the fragmentation process by plow were modelled. The coal material beneath the cutters showed the elastic, plastic and fracturing behaviors in this analysis. In all the models, the plastic zone was fractured and some micro-cracks were induced but the elastic zone remained undamaged. It was observed that the tensile strength affected the failure mechanism of coal significantly and as it increased the extent of the fractured zone underneath the plow cutter decreased during the fragmentation process.

Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.99-110
    • /
    • 2017
  • In this paper, the effect of normal load on the failure mechanism of echelon joint has been studied using PFC2D. In the first step, calibration of PFC was undertaken with respect to the data obtained from experimental laboratory tests. Then, six different models consisting various echelon joint were prepared and tested under two low and high normal loads. Furthermore, validation of the simulated models were cross checked with the results of direct shear tests performed on non-persistent jointed physical models. The simulations demonstrated that failure patterns were mostly influenced by normal loading, while the shear strength was linked to failure mechanism. When ligament angle is less than $90^{\circ}$, the stable crack growth length is increased by increasing the normal loading. In this condition, fish eyes failure pattern occur in rock bridge. With higher ligament angles, the rock bridge was broken under high normal loading. Applying higher normal loading increases the number of fracture sets while dilation angle and mean orientations of fracture sets with respect to ligament direction will be decreased.

Energy evolution characteristics of coal specimens with preformed holes under uniaxial compression

  • Wu, Na;Liang, Zhengzhao;Zhou, Jingren;Zhang, Lizhou
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.55-66
    • /
    • 2020
  • The damage or failure of coal rock is accompanied by energy accumulation, dissipation and release. It is crucial to study the energy evolution characteristics of coal rock for rock mechanics and mining engineering applications. In this paper, coal specimens sourced from the Xinhe mine located in the Jining mining area of China were initially subjected to uniaxial compression, and the micro-parameters of the two-dimensional particle flow code (PFC2D) model were calibrated according to the experimental test results. Then, the PFC2D model was used to subject the specimens to substantial uniaxial compression, and the energy evolution laws of coal specimens with various schemes were presented. Finally, the elastic energy storage ratio m was investigated for coal rock, which described the energy conversion in coal specimens with various arrangements of preformed holes. The arrangement of the preformed holes significantly influenced the characteristics of the crack initiation stress and energy in the prepeak stage, whereas the characteristics of the cumulative crack number, failure pattern and elastic strain energy during the loading process were similar. Additionally, the arrangement of the preformed holes altered the proportion of elastic strain energy Ue in the total energy in the prepeak stage, and the probability of rock bursts can be qualitatively predicted.

뇌관의 시차 정밀도가 터널 여굴에 미치는 영향 수치해석 (Numerical Analysis of tunnel overbreak influenced by delay time accuracy of detonator)

  • 안봉도;강대우
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2009년도 학술발표회 논문집
    • /
    • pp.73-82
    • /
    • 2009
  • 터널외곽에 적용하는 지발뇌관의 시차 정밀도 차이가 터널의 여굴 형성에 어떠한 영향을 미치는가를 알아보기 위하여 Particle Flow Code 2D (PFC2D)라는 개별요소법을 기반으로 하여 개발된 상용프로그램(Itasca CG, 2004)을 사용하여 분석하였다. 그 결과 시차 정밀도가 정확하면 정확하지 않은 것보다 모암의 손상 및 여굴이 감소하는 것으로 나타났다.

  • PDF

Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)

  • Sarfarazi, Vahab;Haeri, Hadi
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.537-547
    • /
    • 2018
  • This research presents the effect of anisotropy of the hollow disc mode under Brazilian test using PFC3D. The Brazilian tensile strength test was performed on the hollow disc specimens containing the bedding layers and then these specimens were numerically modeled by using the two dimensional discrete element code (PFC3D) to calibrate this computer code for the simulation of the cracks propagation and cracks coalescence in the anisotropic bedded rocks. The thickness of each layer within the specimens varied as 5 mm, 10 mm and 20 mm and the layers angles were changed as $0^{\circ}$, $25^{\circ}$, $50^{\circ}$, $75^{\circ}$ and $90^{\circ}$. The diameter of internal hole was taken as 15 mm and the loading rate during the testing process kept as 0.016 mm/s. It has been shown that for layers angles below $25^{\circ}$ the tensile cracks produce in between the layers and extend toward the model boundary till interact and break the specimen. The failure process of the specimen may enhance as the layer angle increases so that the Brazilian tensile strength reaches to its minimum value when the bedding layers is between $50^{\circ}$ and $75^{\circ}$ but its value reaches to maximum at a layer angle of $90^{\circ}$. The number of tensile cracks decreases as the layers thickness increases and with increasing the layers angle, less layer mobilize in the failure process.

PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.497-505
    • /
    • 2018
  • Three points bending flexural test was modeled numerically to study the crack propagation in the pre-cracked beams. The pre-existing edge cracks in the beam models were considered to investigate the crack propagation and coalescence paths within the modeled samples. The effects of particle size on the single edge-notched round bar in bending test were considered too. The results show that Failure pattern is constant by increasing the ball diameter. Tensile cracks are dominant mode of failure. These crack initiates from notch tip, propagate parallel to loading axis and coalescence with upper model boundary. Number of cracks increase by decreasing the ball diameter. Also, tensile fracture toughness was decreased with increasing the particle size. In the present study, the influences of particles sizes on the cracks propagations and coalescences in the brittle materials such as rocks and concretes are numerically analyzed by using a three dimensional particle flow code (PFC3D). These analyses improve the understanding of the stability of rocks and concretes structures such as rock slopes, tunnel constructions and underground openings.