• 제목/요약/키워드: particle flow code

Search Result 149, Processing Time 0.023 seconds

Mechanical behavior of rock-coal-rock specimens with different coal thicknesses

  • Guo, Wei-Yao;Tan, Yun-Liang;Yu, Feng-Hai;Zhao, Tong-Bin;Hu, Shan-Chao;Huang, Dong-Mei;Qin, Zhe
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.1017-1027
    • /
    • 2018
  • To explore the influence of coal thickness on the mechanical behavior and the failure characteristics of rock-coal-rock (RCR) mass, the experimental investigation of uniaxial compressive tests was conducted first and then a systematic numerical simulation by particle flow code (PFC2D) was performed to deeply analyze the failure mechanical behavior of RCR specimens with different coal thicknesses in conventional compression tests. The overall elastic modulus and peak stress of RCR specimens lie between the rock and the coal. Inter-particle properties were calibrated to match the physical sample strength and the stiffness response. Numerical simulation results show that the deformation and strength behaviors of RCR specimens depend not only on the coal thickness, but also on the confining pressure. Under low confining pressures, the overall failure mechanism of RCR specimen is the serious damage of coal section when the coal thickness is smaller than 30 mm, but it is shear failure of coal section when the coal thickness is larger than 30 mm. Whereas under high confining pressures, obvious shear bands exist in both the coal section and the rock section when the coal thickness is larger than 30 mm, but when the coal thickness is smaller than 30mm, the failure mechanism is serious damage of coal section and shear failure of rock section.

CFD Validation of Solid-Liquid Two-Phase flow for Analysis of Drilling Fluid Flow Characteristics (이수의 유동 특성 분석을 위한 고체-액체 2상 유동의 전산유체역학적 유효성 검토)

  • Choi, Yong-Seok;Park, Jae-Hyoun;Bae, Jae-Hwan;Lee, Bong-Hee;Kim, Jeong-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.611-618
    • /
    • 2018
  • In this study, numerical analysis of solid-liquid two-phase flow was conducted as a preliminary step to analyze the flow characteristics of drilling fluid using the commercial CFD code, ANSYS CFX 14.5. The homogeneous model and separated flow model were used to simulate solid-liquid two-phase flow phenomena. In the separated flow model, Gidaspow's drag force model was applied with the kinetic theory model was applied for solid particles. The validity of the numerical model used in this study was verified based on the published experimental results. Numerical analysis was carried out for volume fractions of 0.1 to 0.5 and velocities of 1 to 5 m/s in a horizontal tube with a diameter of 54.9 mm and a length of 3 m. The Pressure drop and volume fraction distribution of solid particles were confirmed. The pressure drop was predicted using the homogeneous model and separated flow model within the MAE of 17.04 % and 8.98 %, respectively. A high volume fraction was observed in the lower part of the tube, and the volume fraction decreased toward the upper part. As velocity increased, variations in volume fraction distribution at varying heights were decreased, and the numerical results predicted these flow characteristics well.

ACCELERATION OF COSMIC RAYS AT LARGE SCALE COSMIC SHOCKS IN THE UNIVERSE

  • KANG HYESUNG;JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.4
    • /
    • pp.159-174
    • /
    • 2002
  • Cosmological hydrodynamic simulations of large scale structure in the universe have shown that accretion shocks and merger shocks form due to flow motions associated with the gravitational collapse of nonlinear structures. Estimated speed and curvature radius of these shocks could be as large as a few 1000 km/s and several Mpc, respectively. According to the diffusive shock acceleration theory, populations of cosmic-ray particles can be injected and accelerated to very high energy by astrophysical shocks in tenuous plasmas. In order to explore the cosmic ray acceleration at the cosmic shocks, we have performed nonlinear numerical simulations of cosmic ray (CR) modified shocks with the newly developed CRASH (Cosmic Ray Amr SHock) numerical code. We adopted the Bohm diffusion model for CRs, based on the hypothesis that strong Alfven waves are self-generated by streaming CRs. The shock formation simulation includes a plasma-physics-based 'injection' model that transfers a small proportion of the thermal proton flux through the shock into low energy CRs for acceleration there. We found that, for strong accretion shocks, CRs can absorb most of shock kinetic energy and the accretion shock speed is reduced up to $20\%$, compared to pure gas dynamic shocks. For merger shocks with small Mach numbers, however, the energy transfer to CRs is only about $10-20\%$ with an associated CR particle fraction of $10^{-3}$. Nonlinear feedback due to the CR pressure is insignificant in the latter shocks. Although detailed results depend on models for the particle diffusion and injection, these calculations show that cosmic shocks in large scale structure could provide acceleration sites of extragalactic cosmic rays of the highest energy.

Effect of transversely bedding layer on the biaxial failure mechanism of brittle materials

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Moosavi, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • The biaxial failure mechanism of transversally bedding concrete layers was numerically simulated using a sophisticated two-dimensional discrete element method (DEM) implemented in the particle flow code (PFC2D). This numerical modelling code was first calibrated by uniaxial compression and Brazilian testing results to ensure the conformity of the simulated numerical model's response. Secondly, 21 rectangular models with dimension of $54mm{\times}108mm$ were built. Each model contains two transversely bedding layers. The first bedding layer has low mechanical properties, less than mechanical properties of intact material, and second bedding layer has high mechanical properties, more than mechanical properties of intact material. The angle of first bedding layer, with weak mechanical properties, related to loading direction was $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ while the angle of second layer, with high mechanical properties, related to loading direction was $90^{\circ}$, $105^{\circ}$, $120^{\circ}$, $135^{\circ}$, $150^{\circ}$, $160^{\circ}$ and $180^{\circ}$. Is to be note that the angle between bedding layer was $90^{\circ}$ in all bedding configurations. Also, three different pairs of the thickness were chosen in models, i.e., 5 mm/10 mm, 10 mm/10 mm and 20 mm/10 mm. The result shows that in all configurations, shear cracks develop between the weaker bedding layers. Shear cracks angel related to normal load change from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Numbers of shear cracks are constant by increasing the bedding thickness. It's to be noted that in some configuration, tensile cracks develop through the intact area of material model. There is not any failure in direction of bedding plane interface with higher strength.

Modeling of rock dilation and spalling in an underground opening at depth (대심도 지하공동에 발생하는 암반의 팽창 및 스폴링 현상 모델링)

  • Cho, Nam-Kak;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.31-41
    • /
    • 2010
  • This paper presents both numerical and physical modeling approaches for the dilation and spalling of rock recognized as typical process of rock around an underground opening at depth. For physical approach, laboratory testing of rectangular beams using a synthetic rock was used to investigate the onset of dilation and spalling. The beams are axially compressed and subjected to 4-point bending to provide non-uniform compressive stresses which are similar to the maximum tangential stress distribution around circular openings. Discrete element numerical analyses using commercial code $PFC^{2D}$ (Particle Flow Code) were performed to evaluate the stress path at various locations in the beams. The findings from these approaches suggest that the onset of dilation in laboratory tests appears to be a good indicator for assessing the stress magnitudes required to initiate spalling.

Application of Discrete Element Method to Evaluate Thermal Conductivity of Backfill Materials for Horizontal Ground Heat Exchanger (수평형 지중열교환기용 되메움재의 열전도도 평가를 위한 개별요소법 적용 연구)

  • Han, Eunseon;Yi, Jihae;Shon, Byonghu;Choi, Hangseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.123.1-123.1
    • /
    • 2010
  • 수평형 지중열교환기의 최적설계를 위해서는 되메움재의 광물특성 및 입자크기, 열전도도(thermal conductivity), 열용량(heat capacity)등과 같은 열적 특성을 파악 하는 것은 중요하다. 수평형 지중 열교환기용 되메움재의 열전도도를 파악하기 위해 비정상 열선법을 적용한 QTM-500을 사용하여 포화도에 따른 천연규사-물-공기 혼합물의 열전도도를 측정하였다. 측정된 열전도도를 개별요소법(Discrete Element Mothod)에 근거한 2차원 수치해석 프로그램인 PFC2D(Particle Flow Code in 2 Dimension)를 이용하여 비교 분석하였다. 수치해석에서는 혼합물의 건조밀도를 일정하게 유지한 상태에서 포화도에 따라 가상의 물 입자 개수를 변화시켰다. 개별요소법을 이용한 열전달 수치해석에서는 입자의 접촉을 통해 발생한 thermal pipe에 의해 열전달이 이루어진다. 이러한 thermal pipe의 열전도도는 접촉된 두 입자의 열전도도와 접촉면의 평균 열전도도를 고려하여 적용하였다.

  • PDF

Study on the Free Surface Behavior Using the Lattice Boltzmann Method (격자볼츠만법을 이용한 자유수면 거동 특성 연구)

  • Jung, Rho-Taek
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.255-262
    • /
    • 2013
  • The boltzmann equation is based on the particle distribution function while the Navire-Stokes equation based on the continuum theory. In order to simulate free surface flow, this paper used the Lattice Boltzmann Method of which is the discretized form. The detail study on the characteristics of the Lattice Boltzmann Method for the free surface simulation was investigated. The developed code was validated with the traditional dam breaking problem by tracking the front position of the water. A basic roles of density functions in the Lattice Boltzmann Method is discussed. To have an engineering applications, the simulation is also conducted the free surface behavior with an arbitrary wall geometry.

Application of an integro-differential equation to the analysis of geotechnical problems

  • Poorooshasb, H.B.;Alamgir, M.;Miura, N.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.227-242
    • /
    • 1996
  • An important class of problems in the field of geotechnical engineering may be analyzed with the aid of a simple integro-differential equation. Behavior of "rigid" piles(say concrete piles), "deformable" piles(say gravel piles), pile groups, pile-raft foundations, heavily reinforced earth, flow within circular silos and down drag on cylindrical structures (for example the crusher unit of a mineral processing complex) are the type of situations that can be handled by this type of equation. The equation under consideration has the form; $$\frac{{\partial}w(r,\;z)}{{\partial}z}+f(z){\int}^z_0g({\xi})(\frac{{\partial}^2w(r,\;{\xi})}{{\partial}r^2}+\frac{1}{r}\frac{{\partial}w(r,\;{\xi})}{{\partial}r})d{\xi}+h(r,\;z)=0$$ where w(r, z) is the vertical displacement of a soil particle expressed as a function of the polar cylindrical space coordinates (r, z) and the symbols f, g and h represent soil properties and the loading conditions. The merit of the analysis is its simplicity (both in concept and in application) and the ease with which it can be expressed in a computer code. In the present paper the analysis is applied to investigate the behavior of a single rigid pile to bedrock. The emphasis, however, is placed on developing the equation, the numerical techique used in its evaluation and validation of the technique, hereafter called the ID technique, against a formal program, CRISP, which uses the FEM.

MEASUREMENT OF FLOW DISTRIBUTION IN A STRAIGHT DUCT OF RAILWAY TUNNEL MOCK-UP USING PIV AND COMPARISON WITH NUMERICAL SIMULATION (PIV 기법을 이용한 모형철도터널 직관덕트에서 유동 분포 계측 및 수치해석 결과와의 비교분석)

  • Jang, Y.J.;Jung, W.S.;Park, I.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • The turbulent flows in a tunnel mock-up($10L{\times}0.5W{\times}0.25H$ m3 : scale reduction 1/20) with rectangular cross section were investigated. The instantaneous velocity fields of Re = 49,029, 89,571 were measured by the 2-D PIV system which is consisted of double pulsed Nd:Yag laser and the tracer particles in the straight-duct mock-up where the flows were fully developed. The mean velocity profiles were taken from the ensemble averages of 1,000 instantaneous velocity fields. Simultaneously, numerical simulations(RANS) were performed to compare with experimental data using STREAM code. Non-linear eddy viscosity model (NLEVM : Abe-Jang-Leschziner Eddy Viscosity Model) was employed to resolve the turbulent flows in the duct. The calculated mean velocity profiles were well compared with PIV results. In the log-law profiles, the experimental data were in good agreement with numerical simulations all the way to the wake region except the viscous sub-layer (near wall region).

Direct and indirect methods for determination of mode I fracture toughness using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • In this paper, mode I fracture toughness of rock was determined by direct and indirect methods using Particle Flow Code simulation. Direct methods are compaction tension (CT) test and hollow centre cracked quadratic sample (HCCQS). Indirect methods are notched Brazilian disk (NBD) specimen, the semi-circular bend (SCB) specimen, hollow centre cracked disc (HCCD), the single edge-notched round bar in bending (SENRBB) specimen and edge notched disk (END). It was determined that which one of indirect fracture toughness values is close to direct one. For this purpose, initially calibration of PFC was undertaken with respect to data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, the simulated models in five introduced indirect tests were cross checked with the results from direct tests. By using numerical testing, the failure process was visually observed. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Mode I fracture toughness of rock in direct test was less than other tests results. Fracture toughness resulted from semi-circular bend specimen test was close to direct test results. Therefore semi-circular bend specimen can be a proper test for determination of Mode I fracture toughness of rock in absence of direct test.