• Title/Summary/Keyword: particle displacement

Search Result 162, Processing Time 0.022 seconds

Fractional Diffusion Equation Approach to the Anomalous Diffusion on Fractal Lattices

  • Huh, Dann;Lee, Jin-Uk;Lee, Sang-Youb
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1723-1727
    • /
    • 2005
  • A generalized fractional diffusion equation (FDE) is presented, which describes the time-evolution of the spatial distribution of a particle performing continuous time random walk (CTRW) on a fractal lattice. For a case corresponding to the CTRW with waiting time distribution that behaves as $\psi(t) \sim (t) ^{-(\alpha+1)}$, the FDE is solved to give analytic expressions for the Green’s function and the mean squared displacement (MSD). In agreement with the previous work of Blumen et al. [Phys. Rev. Lett. 1984, 53, 1301], the time-dependence of MSD is found to be given as < $r^2(t)$ > ~ $t ^{2\alpha/dw}$, where $d_w$ is the walk dimension of the given fractal. A Monte-Carlo simulation is also performed to evaluate the range of applicability of the proposed FDE.

Dynamic modeling and control of IPMC hydrodynamic propulsor

  • Agrahari, Shivendra K.;Mukherjee, Sujoy
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.499-508
    • /
    • 2017
  • The ionic polymer-metal composite (IPMC) is an electroactive polymer material and has a promising potential as actuators for propulsion and locomotion in underwater systems. In this paper a physics based model is used to analyse the actuation dynamics of the IPMC propulsor. Moreover, proportional-integral (PI) controller is used for position control of the tip displacement of IPMC propulsor. PI parameter tuning is performed using particle swarm optimization (PSO) algorithm. Several performance indices have been used as an objective function to optimize the error of the system. Finally, the best tuning method is found out by comparing the results under various performance indices.

The Wave Propagation in transversely isotropic composite laminates (가로 등방성 복합재료의 파동전파에 관한 연구)

  • Kim Hyung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.422-425
    • /
    • 2005
  • In an transversely isotropic composite laminates, the velocities, the particle directions and the amplitudes of reflected and transmitted waves were obtained using the equation of motion, the constitutive equation, and the displacement equation expressed by wave number and frequency Eigenvalue problem involving a velocity was solved by Snell's law. Finally, the results were confirmed by T300 Carbon fiber/5208 Epoxy materials. This approach could be applied to the detection of flaws in a transversely isotropic composite laminates by the water immersion C-scan procedure.

  • PDF

A discrete particle model for reinforced concrete fracture analysis

  • Azevedo, N. Monteiro;Lemos, J.V.;Almeida, J.R.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.343-361
    • /
    • 2010
  • The Discrete Element Method adopting particles for the domain discretization has recently been adopted in fracture studies of non-homogeneous continuous media such as concrete and rock. A model is proposed in which the reinforcement is modelled by 1D rigid-spring discrete elements. The rigid bars interact with the rigid circular particles that simulate the concrete through contact interfaces. The DEM enhanced model with reinforcement capabilities is evaluated using three point bending and four point bending tests on reinforced concrete beams without stirrups. Under three point bending, the model is shown to reproduce the expected final crack pattern, the crack propagation and the load displacement diagram. Under four point bending, the model is shown to match the experimental ultimate load, the size effect and the crack propagation and localization.

A Study on Third Body Abrasion in the Small Clearance Region Adjacent to the Contact Area

  • Kim, Hyung-Kyu;Lee, Young-Ho;Heo, Sung-Pil;Jung, Youn-Ho
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.8-13
    • /
    • 2003
  • Abrasion in fretting wear mechanism is studied experimentally with the specimens of two different shapes of spacer grid spring and fuel tubes of a nuclear fuel. Reciprocating sliding wear test has been carried out in the environment of air and water at room temperature. Especially, third body abrasion is referred to for explaining the wear region expansion found during the slip displacement increase with constant normal contact farce. It is found that the expansion behaviour depends on the contact shape. The small clearance between the tube and spring seems to be the preferable region of the wear particle accumulation, which causes third body abrasion of the non-contact area. Even in water environment the third body abrasion occurs apparently. Since the abrasion on the clearance contributes wear volume, the influence of the contact shape on the severity of third body abrasion should be considered to improve the grid spring design in the point of restraining wear damage of a nuclear fuel.

Application of Thin-Walled Tubes Using Guided Wave (유도초음파를 이용한 대구경 배관 적용에 관한 연구)

  • Park, S.K.;Lee, Y.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.58-65
    • /
    • 2008
  • A method to test thin-walled tubes by guided ultrasonic wave is reported. The principle is that applicate two types of axially symmetric ultrasonic tube modes and "longitudinal" modes with particle displacement, which is coupled in axial and radial directions for transverse failures and torsional modes, oscillating in the circumferential direction only, for longitudinal failures. Both types of modes propagate along the tube in the axial direction. Therefore, a pulse-echo technique is possible. The pulses are excited and received at one end of the tube without contact electro-dynamic transducers. As soon as the tubes is put into a transducer coil at one end, the test of the whole tube can be accomplished in a few milliseconds. It is not necessary to rotate and transport the tubes during the test.

  • PDF

The Wave Propagation in Transversely Isotropic Composite Laminates (가로 등방성 복합재료의 초음파에 관한 연구)

  • Kim Hyung-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.62-69
    • /
    • 2006
  • In transversely isotropic composite laminates, the velocities, the particle directions and the amplitudes of reflected and transmitted waves were obtained using the equation of motion, the constitutive equation, and the displacement equation expressed by wave number and frequency. Eigenvalue problem involving a velocity was solved by Snell's law. Finally, the results were confirmed by 7300 Carbon fiber/5208 Epoxy materials. This approach could be applied to the detection of flaws in transversely isotropic composite laminates by the water immersion C-scan procedure.

Development of Fitting Process for Extra Long Stainless/Composite Material Pipes (초장축 스테인레스/복합재료 파이프의 피팅 공정 개발)

  • Park, S.H.;Lee, C.M.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2008
  • Rubbing-roller is used for manufacturing liquid crystal display, and static displacement of the rubbing-roller becomes bigger as length of the rubbing roller made of aluminum is getting longer. Therefore, material of the rubbing-roller is changed from aluminum to CFRP(Carbon Fiber Reinforced plastic). Recently thermal spraying is applied to manufacturing process of long rubbing-roller. The thermal spraying has disadvantages such as increment of manufacturing time and fraction defective caused by density of stainless steel particle. In this study, fitting process by drawing was suggested and FEM analysis with Tsai-Wu failure theory and fitting experiments are carried out to find adequate shrink allowance. The suggested shrink allowance gives proper adhesive force, and CFRP failure is not occurred. Furthermore, the fitting process is applied to long rubbing-roller and availability of the fitting process is studied by measurement of roundness, straightness and shear strength.

Multi-criteria shape design of crane-hook taking account of estimated load condition

  • Muromaki, Takao;Hanahara, Kazuyuki;Tada, Yukio
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.707-725
    • /
    • 2014
  • In order to improve the crane-hook's performance and service life, we formulate a multi-criteria shape design problem considering practical conditions. The structural weight, the displacement at specified points and the induced matrix norm of stiffness matrix are adopted as the evaluation items to be minimized. The heights and widths of cross-section are chosen as the design variables. The design variables are expressed in terms of shape functions based on the Gaussian function. For this multi-objective optimization problem with three items, we utilize a multi-objective evolutionary algorithm, that is, the multi-objective Particle Swarm Optimization (MOPSO). As a common feature of obtained solutions, the side views are tapered shapes similar to those of actual crane-hook designs. The evaluation item values of the obtained designs demonstrate importance of the present optimization as well as the feasibility of the proposed optimal design approach.

Numerical Simulation of Cold Compaction of 3D Granular Packings

  • Chen, Yuan;Imbault, Didier;Doremus, Pierre
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.189-190
    • /
    • 2006
  • During cold compaction processes loose powder is pressed under tooling action in order to produce complex shaped engineering components. Here, the analysis of the plastic deformation of granular packings is of fundamental importance to the development of computer simulation models. Powders can be idealized by packing discrete particles, where each particle is a sphere meshed with finite elements. The pressing of a body centered cubic packing was compared with numerical prediction and experimental data. The global response was expressed in force-displacement curve, and the accuracy of the numerical models analyzed for high relative densities up to 0.95.

  • PDF