• 제목/요약/키워드: particle dispersed metal matrix composite

검색결과 12건 처리시간 0.022초

형상기억입자 강화 복합체의 탄성계수 평가 (Evaluation of Elastic Modulus in a Particulate Reinforced Composite by Shape Memory Effect)

  • 김홍건
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.25-31
    • /
    • 2001
  • The theoretical modeling to predict the modulus of elasticity by the shape memory effect of dispersed particles in a metal matrix composite was studied. The modeling approach is based on the Eshelbys equivalent inclusion method and Mori-Tanakas mean field theory. The calculation was performed on the TiNi particle dispersed Al metal matrix composites(PDMMC) with varying volume fractions and prestrains of the particle. It was found that the prestrain has no effect on the Yonugs modulus of PDMMC but the volume fraction does affects it. This approach has an advantage of definite control of Youngs modulus in PDMMCs.

형상기억효과에 따른 3차원 잔류응력의 해석 (Analysis of 3-D residual Stresses Due to Shape Memory Effects)

  • 김홍건
    • 한국생산제조학회지
    • /
    • 제8권5호
    • /
    • pp.42-46
    • /
    • 1999
  • The strengthening of a metal matrix composite(MMC) by the shape memory effect(SME) of dispersed TiNi particles was theoretically studied. An analytical model was constructed for the prediction of the average residual stress(<$\delta$>m) on the base of the Eshelby's equivalent inclusion method. The analysis was performed on the TiNi particle/Al metal matrix composites with varying volume fractions and prestrains of the particle. The residual stress caused by the shape memory of predeformed fillers has been predicted to contribute significantly to the strengthening of this composite.

  • PDF

형상기억효과에 의해 발생되는 잔류응력의 해석 (Analysis of Residual Stresses Due to Shape Memory Effects)

  • 노홍길;김홍건;조영태;이동주;정태진;김경석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.147-152
    • /
    • 1999
  • The strengthening of a metal matrix composite(MMC) by the shape memory effect(SME) of dispersed TiNi particles was theoretically studied. An analytical model was constructed for the prediction of the average residual stress(<$\sigma$>/sub/m) on the base of the Eshelby's equivalent inclusion method. The analysis was performed on the TiNi particle/Al metal matrix composites with varying volume fractions and prestrains of the particle. The residual stress caused by the shape memory of predeformed fillers has been predicted to contribute significantly to the strengthening of this composite.

  • PDF

가압소결에 의한 PTFE/AI 복합재료 제조 (Fabrication of PTFE/Al Composite Materials by Hot Press Process)

  • 이길근;김우열
    • 한국분말재료학회지
    • /
    • 제9권2호
    • /
    • pp.103-109
    • /
    • 2002
  • To investigate the fabrication possibility of a polymer particle dispersed metal matrix composite, polytetrafluorothylene (PTFE) particles were incorporated into the Al by the powder metallurgy process. The characteristics of a PTFE/Al composite were evaluated by measuring the density and hardness, and analysis of XRD, FT-Raman and microstructure. And wear properties of these composites were evaluated under the dry wear condition. It was possible to obtain the PTFE particles stably dispersed Al matrix composites by the hot press process at the sintering temperature of $500^{\circ}C$. The wear coefficient of a PTFE/Al compoite decreased with increasing of the volume fraction of PTFE. The wear weight of a PTFE/Al composite increased with increasing of the volume fractionof PTFE in the range of 0~10 vol.%PTFE, and showed maximum value at 10 vol.%PTFE, and then decreased at 20vol.%PTFE.

에멀젼을 이용한 Al2O3-ZrO2 복합분체의 제조 : II. 에멀젼-가열석유 증발법 (Preparation of Al2O3-ZrO2 Composite Powders by the Use of mulsions : II. Emulsion-Hot Kerosene Drying Method)

  • 현상훈;백종규
    • 한국세라믹학회지
    • /
    • 제25권3호
    • /
    • pp.284-292
    • /
    • 1988
  • Alumina-zirconia composite powders for the purpose of improving fracture toughness and thermal shock resistance of alumina were prepared by the emulsion-kerosene drying method. The average particle size of composite powders was less then 1 $\mu\textrm{m}$ and their shapes were spherical. It was shown that the average particle size of composite powders decreased with the concentration of metal-salt in solution and the amount of span 80 added when preparing emulsions. The structure of all zirconia in composite powders heat-treated at 1200$^{\circ}C$ was a tetragonal form at room temperature. This result implied that fine zirconia particles were homogeneously dispersed in the alumina matrix.

  • PDF

Rheo-compocasting법에 의한 SiC입자분산 복합재료의 마모특성에 관한 연구 (A Study on the Wear Characteristics of SiC Particle Dispersed Composites by Rheo-Compocasting Method)

  • 곽현만;최창옥
    • 한국주조공학회지
    • /
    • 제13권3호
    • /
    • pp.238-247
    • /
    • 1993
  • Microstructure, hardness and wear characteristics of $SiC_p/Al-6.5wt%Si-1.7wt%Mg$ alloy composites fabricated by the method of rheo-compocasting and hot pressing are investigated in this study. The dispersion of SiC particles in the composites is homogeneous and the hardness improves as additional amount increases. The wear amount of the matrix metal increases highly as wear rates increase, for the wear mechanism changes from adhesive wear to melt wear, and the matrix metal was coated on the surface of revolving disc and its weight increases. In the 5vol% composites, Fe is adhered on the surface of specimen by the projection of the dispersed hard SiC particles which have net-work structure and the coating layer is about $300{\mu}m$. But in the composite more than 20vol%, the wear amount of composite decreases because the SiC particles which have superior hardness, wear resistance and heat resistance properties resist wear, the abrasive wear turn out predominant wear mechanism and so the wear amount of revolving disc increases.

  • PDF

알루미늄표면에 금속-세라믹입자 복합첨가에 의한 내마모성개선 (Improvement of Wear Resistance of Aluminum by Metal-Ceramic Particle Composite Layer)

  • 이규천;박성두;이영호
    • Journal of Welding and Joining
    • /
    • 제15권6호
    • /
    • pp.96-104
    • /
    • 1997
  • The present study was aimed to correlate the microstructure and the hardness as well as the wear resistance of the metal-ceramic particulated composite layer on the pure Al plate. The composite layers were constructed by the addition of TiC particles on the surface of Al-Cu alloyed layers by PTA overlaying process. Initially, the Al-Cu alloyed layers were achieved by the deposition of Al-(25 ~ 48%) Cu alloys on the pure Al plate by TIG process. It was revealed that TiC particles were uniformly dispersed without any reaction with matrix in the composite layer. The volume fraction of TiC particles (TiC V F) increased from 12% to 55% with increasing the number of pass of composite layer. Hardnesses of (Al-48%Cu + TiC (3&4layers)) composite layer were Hv450 and Hv560, respectively, due to the increase of TiC V/F. Hardnesses of (Al-Cu + TiC) composite layers decreased gradually with insreasing temperature from 100$^{\circ}$C to 400$^{\circ}$C, and hardnesses at 400$^{\circ}$C were then reached to 1/5 - 1/10 of room temperature hardness depending on the construction of composite layers. The Specific wear of (Al + Tic) layer and Al-48%Cu alloyed layer decreased to 1/10 of the of pure Al, while the specific wear of (Al-48%Cu + TiC (4 layers)) composite layer exhibited 1/15 of that of steel such as SS400 and STS304.

  • PDF

SiCp/Mg-Al 복합재료의 조직에 미치는 용융가공의 영향 (Influence of Melt Processing Factors on Microstructures of SiCp/Ma-Al Composites)

  • 윤여창;최정철;남태운;박익민
    • 한국주조공학회지
    • /
    • 제13권4호
    • /
    • pp.359-368
    • /
    • 1993
  • Mg-9wt.%Al and Mg-9wt.%-1.6wt%Zn/SiCp(particle size $40{\mu}m$) metal-matrix-composite specimens were manufactured by rheo-compocasting method, known for its effect of improving the wettability. The ceramic reinforcement particles(SiCp) were dispersed in the semi-solid magnesium alloy matrix slurry being vigorously stirred in a high frequency induction furnace under inert atmosphere. A microstructural study of the dispersed particles in the specimens, prepared under different conditions as regards the time(10min, 20min, 30min) and temperature of the stirring, was made with the aid of optical microscope and SEM. The effect of superheating was also observed. It is revealed that 30 minutes' stirring time of the semi-solid at 40% solid fraction temperature(Mg-9wt.%Al : $590^{\circ}C$, AZ91 : $576^{\circ}C$), as determined by the lever rule, gives a satisfactorily uniform distribution of the particles. The superheating is observed to enhance further the uniformity.

  • PDF

원심분사주조법에 의한 $Cu-X(=Al_2O_3,W)_p$ 복합재료의 미세조직 및 복합화 (Compositing Modes and Microstructures of $Cu-X(=Al_2O_3,W)_p$ Composite by Centrifugal Spray-Cast Deposition)

  • 배차헌;정해용
    • 한국주조공학회지
    • /
    • 제17권5호
    • /
    • pp.480-487
    • /
    • 1997
  • Particle reinforced metal matrix composites(MMCs) via a centrifugal spray-cast deposition(CSD) process were fabricated by injecting second phase particles($Al_2O_3$<40${\mu}m$, W<17.3${\mu}m$) into copper melt on the atomizing disc. Compositing modes were investigated by combining microstructures and mathematical modeling between Cu droplets and the reinforced particles injected. The $Cu/W_P$ powders were shown that the W particles penetrate and get embedded in the Cu droplets. It is considered that the W particles composite preferentially in Cu melt on the atomizing disc. On the other hand, the $Al_2O_3$, particles did not penetrate into the Cu droplets on the atomizing disc but get attached in surface of Cu droplets during the flight. It is considered that the compositing may be attained in the flight distance which the relative velocity between Cu droplet and $Al_2O_3$, particle is maximum. The microstructure of the $Cu/W_P$ and the $Cu/(Al_2O_3)_p$ composite preform was strongly influenced by compositing modes of droplets, and after subsequent deposition it was comprised as it is called the dispersed type and the cell type of microstructure, respectively.

  • PDF

탄소나노튜브 강화 SKD11 냉간금형용 하이브리드 탄소나노소결체 제조 및 특성 평가 (Fabrication and Characteristic Evaluation of Hybrid Carbon Nanotubes Reinforced SKD11 Cold Work Tool Steel)

  • 정성실;문제세;이대열;윤국태;박춘달;송재선
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.291-296
    • /
    • 2013
  • SKD11 (ASTM D2) tool steel is a versatile high-carbon, high-chromium, air-hardening tool steel that is characterized by a relatively high attainable hardness and numerous, large, chromium rich alloy carbide in the microstructure. SKD11 tool steel provides an effective combination of wear resistance and toughness, tool performance, price, and a wide variety of product forms. The CNTs was good additives to improve the mechanical properties of metal. In this study, 1, 3 vol% CNTs was dispersed in SKD11 matrix by mechanical alloying. The SKD11+ CNT hybrid nanocomposites were investigated by FE-SEM, particle size distribution, hardness and wear resistance. The CNT was well dispersed in the SKD11 matrix and the mechanical properties of the composite were improved by CNTs addition. It shows good feasibility as cold work die tool.