• Title/Summary/Keyword: particle diameter

Search Result 1,385, Processing Time 0.025 seconds

충전층에서의 국부유효열전도율에 관한 실험적 연구 (An Experimental Study on the Local Effective Thermal Conductivity in Packed Bed)

  • 이종수;양한주;최국광;서정윤
    • 대한설비공학회지:설비저널
    • /
    • 제16권1호
    • /
    • pp.81-88
    • /
    • 1987
  • In this paper, the local effective thermal conductivities and calculated by using the actual temperature distribution in packed bed. The variations of these are investigated for radius and air stream direction, flow rate and particle diameter. The resulting local effective thermal conductivi-ties are classified in the inner zone of bed and vicinity zone of the wall surface. Also these are related to dimensionless axial direction position, radius direction position, and particle diameter and Reynolds number which uses particle diameter as the characteristic length. If these correla-tions are represented by function, the equation is showed in Eq. (3-4). This equation is well satisfied with experimental results within $\pm25\%.$

  • PDF

Study of Several Silica Properties Influence on Sapphire CMP

  • Wang, Haibo;Zhang, Zhongxiang;Lu, Shibin
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.886-891
    • /
    • 2018
  • Colloid silica using as abrasive for polishing sapphire has been extensively studied, which mechanism has also been deeply discussed. However, by the requirement of application enlargement and cost reduction, some new problems appear such as silica service life time, particle diameter mixing, etc. In this paper, several influences of colloid silica usage on sapphire CMP are examined. Results show particle diameter and concentration, pH value, service life time, particle diameter mixing heavily influence removal rate. Further analysis discloses there are two main effect aspects which are quantity of hydroxyl group, contact area for abrasive density stacking between abrasive and sapphire. Based on the discussions, a dynamic process of sapphire polishing is proposed.

함진기체의 배출에 미치는 금망 충진물의 영향 (Effects of Screen Packing Materials an Gas Discharge Dust Containing)

  • 홍영호;함영민
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.120-126
    • /
    • 1993
  • This work was carried out to investigate the effects of solid mass flow rate, mean particle diameter and mesh number of screen packing material on minimum carrying velocity, which defined as the superficial gas velocity of the upper limit of chocking phenomenon. Vertical pneumatic conveying was studied on a 4.6cm 1. D. pipe, 180cm in length. Experiments were performed in both the empty and the screen-packed pipe. It was also examined the effect of superficial gas velocity, solid mass flow, mean particle diameter, and mesh number of packing material on pressure drop. Minimum carrying velocity in screen packed-pipe was lower than that in an empty pipe. besides minimum carrying velocity was decreased with increase in mesh number of screen packing material. The pressure drop In vortical packed-pipe was Increased with superficial gas velocity, mean particle diameter, and mesh number of screen packing material.

  • PDF

미세입자 분사가공 시 평면과 나선형 곡면 차이에 의한 분사조건 변화 연구 (Investigation of Changes in Injection Conditions Due to the Difference of Plane and Spiral Surface in Micro Particle Blasting)

  • 최성윤;이은주;이세한;권대규
    • 한국기계가공학회지
    • /
    • 제19권9호
    • /
    • pp.53-58
    • /
    • 2020
  • This study analyzed the surface roughness of the fine particle spraying process in the plane and the surface roughness by the factors in the fine particle spraying process on the helical surface is analyzed. Finally, the surface fine particle spraying process and the helical curved surface fine particle Analyze the difference in injection conditions of the injection process. Key process variables are particle type, nozzle diameter, and pressure. The remaining conditions are fixed values of. A total of 32 experiments were conducted, each with different process variables. Rectangular and cylindrical specimens were fabricated and a corresponding jig was prepared for use in the experiment. Analyses conducted by using ANOVA enabled comparisons of the effects of each process variable on the experiment.

코로나 방전기가 없는 전기집진기의 미세입자 집진에 관한 수치해석 (Numerical Investigation on Capture of Sub-Micron particles in Electrostatic Precipitator without Corona Discharger)

  • 이진운;장재성;이성혁
    • 한국분무공학회지
    • /
    • 제16권2호
    • /
    • pp.69-75
    • /
    • 2011
  • This article presents computational fluid dynamics (CFD) simulations of sub-micron particle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program (CFD-ACE) including electrostatic theory and Lagrangian-based equation for sub-micron particle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in sub-micron particle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.

주방환기용 그리스 필터의 입자포집 특성에 관한 수치해석 (A Numerical Study on the Particle Collection Characteristics of a Grease Filter for Kitchen Ventilation)

  • 김기정;배귀남;김영일;허남건
    • 설비공학논문집
    • /
    • 제14권10호
    • /
    • pp.792-800
    • /
    • 2002
  • A grease filter is used to remove grease generated from a cooking appliance in a kitchen. This numerical study has been conducted to investigate the particle collection characteristics of a grease filter having nominal flowrate of $100m^3$/h. The flow field and particle trajectories in the grease filter with a flow chamber were simulated by using the commercial code of STAR-CD. The air velocity and pressure distributions were discussed in detail. The pressure drop of a grease filter rapidly increases with increasing the air flowrate. The numerical values of the pressure drop are slightly lower than the experimental values when the air flowrates are 50, 75, and 100㎥/h. The particle collection efficiency of a grease filter increases with increasing the particle diameter, the particle density, and the air flowrate, which means that the inertial impaction is a dominant particle removal mechanism in a grease filter. The cut-off diameter of the tested grease filter representing 50-% collection efficiency is about 11.6$\mu$m for water droplets at $100m^3$/h.

Motion behavior research of liquid micro-particles filtration at various locations in a rotational flow field

  • Yan, Yan;Lin, Yuanzai;Cheng, Jie;Ni, Zhonghua
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.163-170
    • /
    • 2017
  • This study presents a particle-wall filtration model for predicting the particle motion behavior in a typical rotational flow field-filtration in blower system of cooker hood. Based on computational fluid dynamics model, air flow and particles has been simulated by Lagrangian-particle/ Eulerian-gas approaches and get verified by experiment data from a manufacturer. Airflow volume, particle diameter and local structure, which are related to the particle filtration has been studied. Results indicates that: (1) there exists an optimal airflow volume of $1243m^3/h$ related to the most appropriate filtration rate; (2) Diameter of particle is the significant property related to the filtration rate. Big size particles can represent the filtration performance of blower; (3) More than 86% grease particles are caught by impeller blades firstly, and then splashed onto the corresponding location of worm box internal wall. These results would help to study the micro-particle motion behavior and evaluate the filtration rate and structure design of blower.

수평 관에서 고체입자 농도가 압력강하 및 마찰계수에 미치는 효과 (Effects of Particle Concentrations on Friction Factors and Pressure Drops in a Horizontal Pipe)

  • 안수환;이병창;강호근
    • 동력기계공학회지
    • /
    • 제11권4호
    • /
    • pp.44-49
    • /
    • 2007
  • Generally, the economic concept of optimized design and operating conditions in fluidized bed heat exchangers can hardly be realized. Because the lack of fundamental knowledge about the particle flows, the optimum design of the fluidized bed heat exchanger is rather limited. In the present work, measurements are made on pressure drops and friction factors in the horizontal circular tube with solid particles in the circulating water. Two different solid particles of diameters of 3mm and 4mm are covered. The Reynolds numbers are ranged from 10,000 to 45,000. It is concluded that the friction factors for the particles of 4mm diameter are much higher than those for the particles of 3mm diameter. And at the lower particle concentration, the friction factors are strongly influenced by the fluid velocity rather than the particle concentration; However, the effect of the particle concentration on friction factors is also significantly higher at a higher particle concentration operating condition.

  • PDF

간헐포기 소화 슬러지의 고분자 응집제에 의한 개량과 입도 분포 변화에 관한 연구 (A Study on the Conditioning with Polymer and the Particle Size Distribution of Intermittent Aerobic Digestion Sludge)

  • 김희준;김성홍;최재성
    • 한국환경보건학회지
    • /
    • 제30권3호
    • /
    • pp.253-258
    • /
    • 2004
  • Synthetic organic polyelectrolytes can be used to condition sludges to enhance their dewaterability. Intermittent aerobic digestion is an useful digestion technology and has many advantages like neutral pH, low installation cost and easiness to operation. The objectives of this study were to investigate the dewaterability of intemittent aerobic digestion sludge and to find the relationship between dewaterability and particle size distribution change under the conditioning of intermittent aerobic digestion sludge by cationic polyelectrolyte. Digested sludge from intermittent aerobic digestion was used and cationic polyacrylamide polymer was added as a conditioner. CST(capillary suction time), TTF(time-to-filtration) were tested as a dewaterability index and the number of particle distribution was analyzed using particle size analyzer. The results indicate that cationic polyelectrolytes is useful to enhance dewaterability of intermittent aerobic digestion sludge. Mean particle diameter was increased as polymer dosage increased and its value was reached up to 100 mm on the condition of optimal cationic polymer dosage. CST and TTF are well correlated with mean particle diameter when the weighting order is 1.7. By the optimal conditioning with cationic polymer, particles in the filtrate are also reduced significantly and this means that conditioning is helpful to main stream by reducing SS loading from return flow.

TSI Aerodynamic Particle Sizer 3321, Grimm Aerosol Spectrometer 1.109, HCT Particle Sensor 3030을 이용한 PM2.5 측정결과 비교 (Comparison Study of the TSI Aerodynamic Particle Sizer 3321, Grimm Aerosol Spectrometer 1.109 and HCT Particle Sensor 3030 for PM2.5 measurement)

  • 김두용;정혁;박재홍;현준호;황정호
    • 한국입자에어로졸학회지
    • /
    • 제8권1호
    • /
    • pp.9-15
    • /
    • 2012
  • Three different commercial particle counters were used to measure the PM2.5 particles in this study. An Aerosol Spectrometer (AS) 1.109 model of Grimm and a Particle Sensor (PS) 3030 model of HCT were compared with an Aerodynamic Particle Sizer (APS) 3321 model of TSI. The responses of these instruments were compared for four sizes ($1.0{\mu}m$, $1.5{\mu}m$, $2.0{\mu}m$ and $2.5{\mu}m$) of polystyrene latex (PSL) particles and indoor air particles of the office room. The mode diameter, particle size distribution and total particle number concentration of PSL particles were measured by each instrument. In the office room, the total particle number concentration was measured for 25 minutes. In results of particle size distribution and mode diameter, the APS 3321 (52 size-channels) was more accurate than the AS 1.109 (31 size-channels) and PS-3030 (10-szie channels) since the APS has more number of size-channels than the other instruments. However, AS 1.109 and PS-3030 provided similar results of total particle number concentration to those from the APS 3321. In results of office room test, there were no significant difference from each instrument similar to results of PSL test.