• Title/Summary/Keyword: particle diameter

Search Result 1,388, Processing Time 0.034 seconds

Rooting and Growth of Kalanchoe 'Gold Strike' Cuttings in Various Mixtures of CGF (재활용 CGE의 다양한 혼합비율에 따른 분화 칼란코에 ‘Gold Strike’ 삽수의 발근과 생육)

  • 이미영;정병룡
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.108-114
    • /
    • 2002
  • Cellular glass foam (CGE), the reprocessed glass, has a possibility as a component of vegetative propagation media of floricultural crops due to the its excellent air and water permeability, similar to that of perlite. An experiment was conducted to evaluate the rooting and growth thereafter of Kalanchoe blossfeldiana ‘Gold Strike’in media containing various volume ratios of granular rockwool, peat-moss, CGF and perlite. The particle size of CGF and perlite was 2.0~4.0mm and 1.2~4.0mm, respectively. Cuttings were rooted in a fog tunnel with a mean temperature of 18.2$^{\circ}C$ and RH of 66.7% under a long day regime (14 h per day light period). Height, length of the longest root, stem diameter, no. of leaves, leaf area, percentage of rooted cuttings, shoot and root fresh weights, shoot and root dry weights, total chlorophyll concentration and physicochemical properties were measured. Cuttings rooted 100% in all treatments. Physicochemical properties in CGF and perlite-containing media showed little differences. The growth of rooted plants in the CGF-containing media was similar or rather superior to that in perlite-containing media. Consequently, CGF has a possibility as a vegetative propagation medium of Kalanchoe. To make wider commercial use of CGF, more demonstrative experiments and analyses are necessary.

Characteristics of Carbidization for Iron Ore Fines with a Wide Size Range (입도분포가 넓은 분철광석의 탄화특성)

  • Hwang Ho-Sun;Chung Uoo-Chang;Chung Won-Sub;Chung Won-Bae
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.42-49
    • /
    • 2003
  • Characteristics of reduction and carbidization for hematite ore with a wide size range have been investigated at high temperature(590∼64$0^{\circ}C$) under $H_2$ and $H_2$-CO gas mixtures. The apparent activation energy for reduction of hematite ore with H2 gas was found to be 20 kJ/mol. The weight loss by reduction was about 28% md the weight gain by carbidization was about 5%. The measured values of weight change were compared with those calculated from equation (3) & (5) and fairly good agreement was obtained. The rate of carbidization was increased with an decrease in temperature, particle diameter and gas ratio($H_2$/ CO). The free carbon was increased with decrease in gas ratio($H_2$/ CO). The rate of carbidization was increased with mixing of $H_2$ gas but this effect was not proportional to fraction of $H_2$ gas. It was also found that the rate of carbidization was the maximum in the $H_2$ gas fraction of 0.5. It is considered that $H_2$ plays a part as a catalyst for formation of iron carbide($Fe_3$C).

Numerical Investigation of Turbulence Structure and Suspended Sediment Transport in Vegetated Open-Channel Flows (식생된 개수로에서 난류 구조와 부유사 이동 현상의 수치해석)

  • Gang, Hyeong-Sik;Choe, Seong-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.581-592
    • /
    • 2000
  • Turbulence structure and suspended sediment transport capacity in vegetated open-channel flows are investigated numerically in the present paper. The $\textsc{k}-\;\varepsilon$ model is employed for the turbulence closure. Mean velocity and turbulence characteristics including turbulence intensity, Reynolds stress, and production and dissipation of turbulence kinetic energy are evaluated and compared with measurement data available in the literature. The numerical results show that mean velocity is diminished due to the drag provided by vegetation, which results in the reduction of turbulence intensity and Reynolds stress. For submerged vegetation, the shear at the top of vegetation dominates turbulence production, and the turbulence production within vegetation is characterized by wakes. For emergent condition, it is observed that the turbulence generation is dominated by wakes within vegetation. In general, simulated profiles compares favorably to measured data. Computed values of eddy viscosity are used to solve the conservation equation for suspended sediment, yielding sediment concentration more uniform over the depth compared with the one in the plain channel. The simulation reveals that the suspended load decreases as the vegetation density increases and the suspended load increases as the particle diameter decreases for the same vegetation density.

  • PDF

Factors Affecting Lipid Oxidation In Full-fat Soy Flour (전지 대부분의 유지산화에 미치는 인자)

  • Kim, Chul-Jai;Lee, C.C.;Johnson, L.A.
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.732-738
    • /
    • 1991
  • Corsoy 79 soybeans were ground into 8-(coarse) and 24-mesh (fine) full-fat soy flours. From the particle size analysis, the 8-mesh full-fat soy flours were found to have larger values for geometric mean diameter and geometric standard deviation. However, the distribution moduli of coarse and fine soy flours were similar and indicated soybeans were nearly 'brittle'. Development of hydrolytic and oxidative rancidities of coarsely and finely ground full-fat soy flours were followed from grinding to 24 hrs later. No increases in peroxide value and conjugated dienes in the oil and hexanal content in the headspace of the flour were observed when the moisture was 10.7% or less. At 14.9% moisture and above, lipid oxidation increased with increased moisture content and storage time. Free fatty acid contents increased slightly at all moisture contents. However, hydrolysis did not exceed 0.06% over the moisture range of 4 to 18%, which is of little practical significance. Fine grinding increased oxidative and hydrolytic rancidities, especially at 14.9% moisture and above. these findings indicate that raw soybeans can be ground to full-fat soy flours and stored up to 24 hrs without undergoing significant lipid and flavor deterioration if the moisture content is 11% or less.

  • PDF

Comparative Study on Removal Characteristics of Disinfection By-products by Air Stripping and Flotation Processes (탈기와 부상 공정에 의한 소독부산물의 제거특성에 관한 비교 연구)

  • Cha, Hwa-Jeong;Won, Chan-Hee;Lee, Kang-Hag;Oh, Won-Kyu;Kwak, Dong-Heui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.513-520
    • /
    • 2016
  • It is well known that volatile compounds including disinfection by-products as well as emissive dissolved gas in water can be removed effectively by air stripping. The micro-bubbles of flotation unit are so tiny as microns while the diameter of fine bubbles applied to air stripping is ranged from hundreds to thousands of micrometer. Therefore, the micro-bubbles in flotation can supply very wide specific surface area to transfer volatile matters through gas-liquid boundary. In addition, long emission time also can be gained to emit the volatile compound owing to the slow rise velocity of micro-bubbles in the flotation tank. There was a significant difference of the THMs species removal efficiency between air stripping and flotation experiments in this study. Moreover, the results of comparative experiments on the removal characteristics of THMs between air stripping and flotation revealed that the mass transfer coefficient, $K_La$ showed obvious differences. To overcome the limit of low removal efficiency of dissolved volatile compounds such as THMs in flotation process, the operation range of bubble volume concentration is required to higher than the operation condition of conventional particle separation.

Quality characteristics of spray dried powder from unripe fig extract (미숙 무화과 추출물을 이용한 분무건조 분말의 품질특성)

  • Chae, Ho-Yong;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.355-360
    • /
    • 2016
  • In this study, the quality characteristics of spray dried powders from unripe fig extract were investigated. The protease activities of unripe fig and peeled unripe fig extract were 0.11 unit/mL and 0.28 unit/mL, respectively. The spray dried powder of unripe fig extracts was analzed using different maltodextrin ratios (F-MD 5, 5% maltodextrin; F-MD 10, 10% maltodextrin; and F-MD 20, 20% maltodextrin). The spray-dried powder showed the highest protease activity with F-MD 10 (0.84 unit/g). The moisture content and L value of the spray-dried powder were higher than those of the freeze-dried powder. The particle diameter of the freeze-dried powder ($209.67{\mu}m$) was higher than that of the spray-dried powders ($22.18{\sim}37.33{\mu}m$). The water absorption index ranged from 0.18 to 0.40, while the water solubility index ranged from 94.40% to 98.80%. In the in vitro digestion study, spray-dried powders of the unripe fig showed a protease survival range of 16.47%~24.80%. In conclusion, it is considered appropriate to use the spray-dried powder (F-MD 10) of unripe fig as a meat tenderizer for processing food.

Applicability of Various Biomasses to Pulverized Coal Power Plants in Terms of their Grindability (다양한 바이오매스의 분쇄도 실험을 통한 미분탄 화력발전 적용가능성 연구)

  • Kang, Byeol;Lee, Yongwoon;Ryu, Changkook;Yang, Won
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.73-79
    • /
    • 2017
  • Recently usage of biomass is increased in pulverized coal power plants for reduction of $CO_2$ emission. Many problems arise when thermal share of the biomass is increased, and milling of the biomasses is one of the most important problems due to their low grindability when existing coal pulverizer is used. Grindability of coal can be measured through the HGI (Hardgrove grindability index) equipment as a standard, but method of measuring biomass grindability has not been established yet. In this study, grinding experiment of coal and biomass was performed using a lab-scale ball mill. One type of coal (Adaro coal) and six biomasses (wood pellet (WP), empty fruit bunch (EFB), palm kernel shell (PKS), walnut shell (WS), torrefied wood chip (TBC) and torrefied wood pellet (TWP)) were used in the experiment. Particle size distributions of the fuels were measured after being milled in various pulverization times. Pulverization characteristics were evaluated by portion of particles under the diameter of $75{\mu}m$. As a result, about 70% of the TBC and TWP were observed to be pulverized to sizes of under $75{\mu}m$, which implies that they can be used as alternative biomass fuels without modification of the existing mill. Other biomass was observed to have low grindability compared with torrefied biomass. Power consumption of the mill for various fuels was measured as well, and the results show that lower power was consumed for torrefied biomasses. This result can be used for characterization of biomass as an alternative fuel for pulverized coal power plants.

The research about the physical properties and flexural strength changed by Low Temperature Degradation of TZP monolithic all-ceramic crown block to make bio-prosthetic dentistry (치과용 생체보철물 제작을 위한 TZP 단일구조 전부도재관 블럭의 물성과 저온열화 후 굴곡강도에 관한 연구)

  • Lee, Jong-Hwa;Park, Chun-Man;Song, Jae-Sang;Lim, Si-Duk;Kim, Jae-Do;Kim, Byung-Sik;Hwang, In-Whan;Lee, Sung-Kuk
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.83-93
    • /
    • 2012
  • Purpose: The objective of this study is to find out physical properties and the flexural strength changed by the low temperature degradation of the block which is needed to make bio-prosthetic dentistry which is better than feldspar affiliated ceramic made by building up ceramic powder and also to apply this to the clinical use of zirconia monolithic all-ceramic crown. Methods: Flexural strength of each sample was evaluated before and after the Low Temperature Degradation, and physical properties of the Tetra Zirconia Block containing 3mol % was evaluated as well. The average and standard deviation of each experimental group were came out of the evaluation. Statistical package for social science 18.0 was used for statistics. Results: The average density of the monolithic all-ceramic crown was $6.0280{\pm}0.0147g/cm$, the relative density was 99.01 %. When the sample was sintered at $1480^{\circ}C$ the diameter of average particle was $396.62{\pm}33.71nm$. All the samples had no monolithic peak after XRD evaluation but only had tetragonal peak. There were statistically significant differences in the result of flexural strength of the samples evaluated after and before the low temperature degradation, the flexural strength before the low temperature degradation was $1747.40{\ss}{\acute{A}}$, at the temperature of $130^{\circ}C$ the flexural strength after the low temperature degradation was 1063.99MPa (p<0.001). There was statistically significant difference in the result of strength of 1020.07MPa after the low temperature degradation at the temperature of $200^{\circ}C$ (p<0.001). Conclusion: The block which was made for this evaluation possesses such an excellent strength among dental restorative materials that it is thought to have no problems to use for tetragonal zirconia polycrystal.

Applicability of the Hydrocyclone for Efficiency Improvements to Sea-water Cooling Systems (해수 냉각시스템 효율 향상을 위한 하이드로사이클론의 적용가능성)

  • Kim Bu-Gi;Han Won-Hui;Cho Dae-Hwan;Choi Min-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.2 s.23
    • /
    • pp.109-115
    • /
    • 2005
  • Hydrocyclone has been widely used for the solid-liquid separation in many industrial sites because of its comparatively preferable applications that can be applied to wide-range particle sizes. If seawater with impurities flows through pumps or heat exchanger, it might cause an decrease in the efficiency of cooling system In this paper, we have suggested some methods of separating impurities from seawater in the cooling system by using a Hydrocyclone. The effects of design factors as solid concentration, cyclone inlet pressure, flow rate and diameter of underflow on the separating performance of the Hydrocyclone were investigated The results from this study are summarized as follows: 1) In proportion to the decrease of solid concentration, the efficiency of solid-liquid separation is improved. 2) According as the cyclone inlet pressure increases the efficiency of separation is improved. Conclusively, this research suggested that the Hydrocyclone will be used as a pre-treatment system of cooling water in machines, and eventually prevent unexpected accidents in engine systems.

  • PDF

Applicability of the Hydrocyclone for Efficiency Improvements to Sea-water Cooling Systems (해수 냉각시스템 효율 향상을 위한 하이드로사이클론의 적용가능성)

  • Kim Bu-Gi;Han Won-Hui;Cho Dae-Hwan;Choi Min-Sun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.109-115
    • /
    • 2004
  • Hydrocyclone has been widely used for the solid-liquid separation in many industrial sites because of its comparatively preferable applications that can be applied to wide-range particle sizes. If seawater with impurities flows through pumps or heat exchanger, it might cause an decrease in efficiency of cooling system. In this paper, we have suggested some methods of separating impurities from seawater in the cooling system by using a Hydrocyclone. The effects of design factors as solid concentration, cyclone inlet pressure, flow rate and diameter of underflow on the separating performance of the Hydrocyclone were investigated The results from this study are summarized as follows: 1) In proportion to the decrease of solid concentration, the efficiency of solid-liquid separation is improved 2) According as the cyclone inlet pressure increases the efficiency of separation is improved Conclusively, this research suggested that the Hydrocyclone will be used as a pre-treatment system of cooling water in machines, and eventually prevent unexpected accidents in engine systems.

  • PDF