• Title/Summary/Keyword: particle diameter

Search Result 1,392, Processing Time 0.032 seconds

Size-segregated mass and ion concentrations of atmospheric aerosols in Cheonan City between 2006 and 2007 (2006~2007년 천안시 대기 에어로졸의 입경별 농도 및 이온성분 특성)

  • Lee, Hyung-Bae;Oh, Se-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1349-1353
    • /
    • 2008
  • Size-segregated mass and ion concentrations of atmospheric aerosols in Cheonan City were measured using a high volume air sampler equipped with a 5-stage cascade impactor and a ion chromatography between March 2006 and April 2007. The mean values of 24-hr average concentrations of TSP, PM10, PM2.5, and PM1 were 61.7, 55.2, 43.7, $33.2{\mu}g/m^3$, respectively. Mass size distributions of atmospheric aerosols were bimodal distributions with a saddle point in $1.5\;{\sim}\;3.0{\mu}m$ range in diameter separating coarse and fine particle modes. Fine particles, PM2.5 were 70.8% of the total mass of aerosols. Major ion components in aerosols were ${NH_{4}}^+$, $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$ for cations, and ${SO_{4}}^{2-}$, ${NO_{3}}^-$, $Cl^-$ for anions. ion components occupied 37.4% of coarse particles and 46.2% of fine particles in mass.

Kinetic and Thermodynamic Features of Combustion of Superfine Aluminum Powders in Air

  • Kwon, Young-Soon;Park, Pyuck-Pa;Kim, Ji-Soon;Gromov, Alexander;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.308-313
    • /
    • 2004
  • An experimental study on the combustion of superfine aluminum powders (average particle diameter, a$_{s}$: ∼0.1 ${\mu}{\textrm}{m}$) in air is reported. The formation of aluminum nitride during the combustion of aluminum in air and the influence of the combustion scenario on the structures and compositions of the final products are in the focus of this study. The experiments were conducted in an air (pressure: 1 atm). Superfine aluminum powders were produced by the wire electrical explosion method. Such superfine aluminum powder is stable in air but once ignited it can burn in a self-sustaining way due to its low bulk: density (∼0.1 g/㎤) and a low thermal conductivity. During combustion, the temperature and radiation were measured and the actual burning process was recorded by a video camera. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and chemical analysis were performed on the both initial powders and final products. It was found that the powders, ignited by local heating, burned in a two-stage self-propagating regime. The products of the first stage consisted of unreacted aluminum (-70 mass %) and amorphous oxides with traces of AlN. After the second stage the AlN content exceeded 50 mass % and the residual Al content decreased to ∼10 mass %. A qualitative discussion is given on the kinetic limitation for AlN oxidation due to rapid condensation and encapsulation of gaseous AlN.N.

Preparation and Evaluation of Cosmetic Tissue using W/Si/W Multiple Emulsion (실리콘 다중유제 (W/Si/W)를 이용한 화장용 티슈의 개발 및 평가)

  • Han, Sang-Chul;Park, Duck-Sang;Shin, Jae-Hong;Kim, Tae-Hyeon;Park, Jeong-Sook;Cho, Cheong-Weon;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.4
    • /
    • pp.217-222
    • /
    • 2007
  • To develop cleansing tissue composed of silicone multiple emulsions which could easily remove make-up residues and confer skin protecting effect without damaging skin, we formulated various silicone multiple emulsions and evaluated the physicochemical properties including viscosity, cleansing effect, and safety effect. Also, cleansing tissue incorporated with silicone multiple (W/Si/W) emulsion was stored for 6 months, and judged its stability through microscopes under accelerated and long-term condition. Cleansing effect was evaluated by chromameter. Skin hydration effect was determined by corneometer and incorporation effect into non-woven fabric cotton was evaluated by volunteer survey. Low viscosity ranged from 400 centipoise (cP) to 1,000 cP was obtained from a stabilized W/Si/W emulsion containing more than 10% volatile silicone. Mean diameter of fresh W/Si/W emulsion was $20{\mu}m$, but after storage for 3 months at $45^{\circ}C$, the particle size of the W/Si/W emulsion increased up to $50{\mu}m$. Both W/Si/W emulsion-incorporated cleansing tissue and commercial product showed equally good cleansing effect. In addition, skin allergies such as erythema, edema, scaling itching, stinging, burning, tightness and prickling were not observed through macroscopic examination. From the transepidermal water loss results, the cleansing tissue consisting of W/Si/W emulsion showed superior hydration effect to commercial product. In conclusion, this study suggests cleansing tissue using W/Si/W emulsion could be used for an excellent efficacy compared with commercialized cleansing tissue.

Characterization of Size Distribution and Water Solubility of 15 Elements in Atmospheric Aerosols

  • Park, Jeong-Ho;Sun, Jeong-Min;Park, Kum-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E1
    • /
    • pp.1-7
    • /
    • 2001
  • The elemental characteristics of atmospheric aerosols were investigated as a function of particle size and water solubility. The aerosol particles were samples at 12 individual size ranges between 0.01 and 30㎛. Collected aerosol particles were separated into both soluble and insoluble components. The concentrations of 15 elements in both components were determined by a PIXE analysis using a 2.0 MeV-proton beam. In general, the mass size distribution of particulate matter was represented as a bimodal distribution. The maximum rations of S in July and December were 5.5 and 3.8 %, and they appeared in the size range of 0.47∼1.17㎛(stage No. 6 or 7) . The ratios of a S at non-separated size were 3.1 and 2.2 % in July and December, respectively, On the other hand, the maximum rations of Si in July and December were 7.0 and 5.4% and they appeared in the size range of 5.1∼30㎛(stage No. 0∼2). The ratios of Si at the non-separated size were 2.1 and 1.8% in July and December, respectively, The mass diameter of 12 elements ranged between 0.59㎛ of S and 3.20 of Fe. More than 90% of atmospheric aerosols consisted of the light elements such as C, N, O, H and Al. The soluble component was dominant in the smaller size range and the insoluble component in the larger size range. Large portions of Si. Ti and Fe existed in insoluble state. By contrast, S, Cl, Ca, Zn and Br were dissolved in water.

Expression and Characterization of a Single-Chain Variable Fragment against Human LOX-1 in Escherichia coli and Brevibacillus choshinensis

  • Hu, Wei;Xiang, Jun-Yan;Kong, Ping;Liu, Ling;Xie, Qiuhong;Xiang, Hongyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.965-974
    • /
    • 2017
  • The single-chain variable fragment (scFv) against lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a promising molecule for its potential use in the diagnosis and immunotherapy of atherosclerosis. Producing this scFv in several milligram amounts could be the starting point for further engineering and application of the scFv. In this study, the abundant expression of the anti-LOX-1 scFv was attempted using Escherichia coli (E. coli) and Brevibacillus choshinensis (B. choshinensis). The scFv had limited soluble yield in E. coli, but it was efficiently secreted by B. choshinensis. The optimized fermentation was determined using the Plackett-Burman screening design and response surface methodology, under which the yield reached up to 1.5 g/l in a 5-L fermentor. Moreover, the properties of the scFvs obtained from the two expression systems were different. The antigen affinity, transition temperature, and particle diameter size were 1.01E-07 M, $55.2{\pm}0.3^{\circ}C$, and 9.388 nm for the scFv expressed by B. choshinensis, and 4.53E-07 M, $52.5{\pm}0.3^{\circ}C$, and 13.54 nm for the scFv expressed by E. coli. This study established an efficient scale-up production methodology for the anti-LOX-1 scFv, which will boost its use in LOX-1-based therapy.

Preparation and Release Characterization of Sodium Alginate Bead Containing Phytoncide Oil (편백정유를 함유한 알지네이트 비드의 제조 및 방출 특성)

  • Yoon, Doo-Soo;Lee, Eung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.557-562
    • /
    • 2018
  • High molecular weight sodium alginate (HMWSA)/low molecular weight sodium alginate (LMWSA) microcapsules containing phytoncide oil were prepared with different LMWSA contents. The effects of the stirring rate and ratio of HMWSA/LMWSA on the diameter and morphology of the phytoncide/alginate beads were investigated by optical microscopy and the release behaviors of phytoncide oil from the phytoncide/alginate beads were characterized by UV/Vis. spectrophotometry. The mean particle size of the phytoncide/alginate beads decreased with increasing stirring rate and concentration of the calcium chloride solution. The surface morphology of the phytoncide/alginate beads changed from smooth surfaces to skin-like rough surfaces with increasing LMWSA content. These results were due mainly to the increased hydrophilic groups at the bead surface, resulting in an increase in the release rate of phytoncide oil in the phytoncide/alginate beads.

Building of Large Triaxial Testing Apparatus and Static Triaxial Testing for Railway Ballast (대형삼축압축시험장비 구축과 도상자갈의 정적압축시험 평가)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Il-Wha;Lee, Jun-S.;Park, Jae-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.84-91
    • /
    • 2010
  • We built multi-purpose large triaxial testing system that can test and evaluate various geotechnical design parameters such as shear strength, deformation modulus and stress-strain behaviour for large diameter granular materials, which are the most commonly used construction materials in the railway, road embankments. The details of the built testing system and the results obtained from static triaxial test carried out for gneiss ballast material are discussed within the scope of this paper. Ballast is hardly saturated and is confined at low overburden pressure, since the depth is shallow and the permeability is very high. Herein we ascertained that the confining pressure can effectively be controlled by vacuum. The rational trend could be checked up through triaxial test results such as shear strength, deformation, and particle breakage. And the shear strength envelope could be non-linearly represented with the parent rock strength, confining pressure of the triaxial test and proper parameters.

Fabrication and Characterization of BCP Nano Particle Loaded PCL Fiber and Their Biocompatibility

  • Nguyen, Thi-Phuong;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.392-400
    • /
    • 2010
  • The electrospinning process was established as a promising method to fabricate nano and micro-textured scaffolds for tissue engineering applications. A BCP-loaded PCL micro-textured scaffold thus can be a viable option. The biocompatibility as well as the mechanical properties of such scaffold materials should be optimized for this purpose. In this study, a composite scaffold of poly ($\varepsilon$-caprolactone) (PCL)-biphase calcium phosphate (BCP) was successfully fabricated by electrospinning. EDS and XRD data show successful loading of BCP nano particles in the PCL fibers. Morphological characterization of fibers shows that with a higher loaded BCP content the fiber surface was rougher and the diameter was approximately 1 to 7 ${\mu}m$. Tensile modulus and ultimate tensile stress reached their highest values in the PCL- 10 wt% BCP composite. When content of nano ceramic particles was low, they were dispersed in the fibers as reinforcements for the polymer matrix. However, at a high content of ceramic particles, the particles tend to agglomerate and lead to decreasing tensile modulus and ultimate stress of the PCL-BCP composite mats. Therefore, the use of nano BCP content for distribution in fiber polymer using BCP for reinforcement is limited. Tensile strain decreased with increasing content of BCP loading. From in vitro study using MG-63 osteoblast cells and L-929 fibroblast like cells, it was confirmed that electrospun PCL-BCP composite mats were biocompatible and that spreading behavior was good. As BCP content increased, the area of cell spreading on the surface of the mats also increased. Cells showed the best adherence on the surface of composite mats at 50 wt% BCP for both L-929 fibroblast-like cells and MG-63 osteoblast cell. PCL- BCP composites are a promising material for application in bone scaffolds.

Dispersion polymerization of styrene and Methylmethacrylate using macromonomers as a reactive stabilizer

  • Jung, Hye-Jun;Lee, Kang-Seok;Choe, Soon-Ja
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.86-88
    • /
    • 2006
  • The novel linear- (V-LUM) and cross-type macromonomers (C-VUM) of vinyl-terminated bifunctional polyurethane were synthesized and applied to the dispersion polymerization of styrene and MMA in ethanol. The existence of the vinyl terminal groups and the grafted macromonomer with styrene and PMMA was verified using 1H NMR and 13C NMR. Monodisperse polystyrene (PS) microspheres were successfully obtained above 15 wt % of macromonomer relative to styrene. The macromonomer can efficiently stabilize higher surface area of the particles compared to a conventional stabilizer, PVP. The grafting ratio of the PS calculated from 1H NMR linearly increased up to 0.048 with 20 wt % of the macromonomer and the high molecular weights (501,300 g/mol) of PS with increased glass transition and enhanced thermal stability were obtained. Furthermore, the stable and monodisperse PMMA microspheres having a weight-average diameter of $5.09{\mu}m$ and a good uniformity of 1.01 were obtained with 20 wt% L-VUM. The molecular weight increased, but the size of the PMMA particles decreased with the macromonomer concentration due to the increased stabilizing effect. The molecular weight of the PMMA was approximately two fold higher than that by a conventional PVP. The L-VUM acts as a reactive stabilizer, which gives polyurethane-grafted PS or PMMA with a high molecular weight. In addition, the XPS result showed that the C-PS (PS using the C-VUM) was anchored with a larger amount of PEG than that of the L-PS (PS using the L-VUM) on the particle surface. Thus, the reaction and stabilizing mechanism of the macromonomers for the formation of PS particles is proposed.

  • PDF

Suspension Polymerization with Hydrophobic Silica as a Stabilizer III. Poly(butyl methacrylate) Composite Particles Containing Carbon Black (소수성 실리카를 안정제로 하는 현탁중합 III. 카본블랙을 함유하는 폴리부틸메타크릴레이트 복합체 입자의 합성)

  • Moon, Ji-Yeon;Park, Moon-Soo
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.477-484
    • /
    • 2009
  • Suspension polymerization with hydrophobic silica as a stabilizer and AIBN as an initiator was conducted to synthesize PBMA particles and PBMA composite particles containing carbon black. Surface modification of silica particles by controlling pH revealed that 90% of them functioned as stabilizer and 10% were incorporated into PBMA particles. While stabilizer concentration had no impact on reaction kinetics and particle diameter, an increase in stabilizer concentration displayed an increase in molecular weights when it exceeded 1.67 wt%. An increase in initiator concentration and reaction temperature decreased molecular weights in close agreement with the theoretical equation. An increase in carbon black concentration from 1 to 7 wt%, relative to the monomer, showed a progressive decrease in reaction conversion. As carbon black was increased from 3 to 5 wt%, glass transition showed a $4^{\circ}C$ increase. The presence of carbon black was confirmed by TEM while its concentration was measured by TGA.