• 제목/요약/키워드: particle counting

검색결과 65건 처리시간 0.031초

Plastic scintillator beta ray scanner for in-situ discrimination of beta ray and gamma ray radioactivity in soil

  • Bae, Jun Woo;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1259-1265
    • /
    • 2020
  • A beta ray scanner was proposed for in-situ discrimination of beta and gamma ray radioactivity. This scanner is based on the principle that gamma and beta rays experience different changes in detection efficiency in scintillators with different geometries, especially with regard to the scintillator thickness. The ratios of the counting rates of gamma rays (Rgamma), beta rays (Rbeta), and sample measurements (Rtotal) in a thick scintillator to those in a thin one are reported. The parameter Xthick, which represents the counting rate contributed by beta rays to the total counting rate in the thick scintillator, was derived as a function of those ratios. The values of Rgamma and Rbeta for 60Co and 90Sr sources were estimated as 3.2 ± 0.057 and 0.99 ± 0.0049, respectively. The estimated beta ray contributions had relative standard deviations of 2.05-4.96%. The estimated range of the beta rays emitted from 90Sr was 19 mm as per the Monte Carlo N-Particle simulation, and this value was experimentally verified. Homogeneous and surface contaminations of 60Co and 90Sr-90Y were simulated for application of the proposed method. The counting rate contributed by the beta rays was derived and found to be proportional to the concentration of 90Sr-90Y contamination.

CWM 방울안의 미분탄 존재 (Pulverized Coal Particle Presence Inside CWM Droplet)

  • 김종호;김성준
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1211-1221
    • /
    • 1990
  • 본 연구에서는 CWM을 이류체 미립화기(twin-fluid atomizer)로 미립화 시켜 미립화에 크게 영향을 미치는 인자들로 믿어지는 공기분사압력, 부하도(loading), 미 분탄의 크기 그리고 CWM 방울 채집위치의 변화가 CWM 방울크기 분포와 CWM 방울안 미 분탄 존재유무에 미치는 영향을 연구의 목적으로 하였다.

고온의 기체 입자 유동으로부터 입자부착 현상에 관한 실험적 연구 (An experimental study of particle deposition from high temperature gas-particle flows)

  • 김상수;김용진
    • 대한기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.501-508
    • /
    • 1987
  • 본 연구에서는 입자발생 장치를 유동층(fluidized bed)을 이용하여 만들었고 이것에 의해서 고온의 연소가스속으로 입자가 공급되므로, 종래의 초음파입자 발생기 나 오리피스진동입자 발생기등에서 일어나는 호학반응 및 입자상호간의 응집(coagul- ation)현상등을 되도록 없게 하여 순수한 구형입자에 대한 입자부착 효과를 볼 수 있 게 함으로써, 부착기구의 이해와 해석등을 한층 유리하게 한다. 그리고 공급되는 입 자의 크기의 범위를 직경 0.2$\mu\textrm{m}$~30$\mu\textrm{m}$ 정도로 광범위하게 다루어 비교적 간단하고 잘 정의된 층류 유동에서, (1) 미세입자의 경우 실시간(real time) 레이져 광반사법에 의 한 입자부착률의 온도구배 및 농도에 대한 효과를 실험하고, (2) 입자의 Counting/Si- zing 법에 의하여 입자크기에 따른 열확산 효과 및 관성충돌 효과 등을 볼 수 있게 한 다.

대기부유 입자의 광학적 측정의 한계와 새로운 파라메타 도출 (Limit and new parameter introduction in optical particle counting system in atmospheric aerosol measurement)

  • 김덕현;차형기;송규석;양기호;민기현
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2002년도 추계학술대회 논문집
    • /
    • pp.68-69
    • /
    • 2002
  • 대기 중에 존재하는 에어로졸 입자의 특성을 이해하기 위해서는 입자의 크기뿐만 아니라 질량 밀도에 대한 정보를 아는 것이 매우 유용하다. 본 연구에서는 광산란과 동시에 입자의 동력학적 속도를 측정함으로써 밀도에 대한 정보도 동시에 알 수 있는 측정방법에 대하여 연구하였다. 이를 위하여 크기가 0.5$\mu\textrm{m}$-3.15$\mu\textrm{m}$이고 굴절률이 1.59이며, 질량 밀도가 1.05g/mL인 구형의 PSL(polystyrene Latex) 표준입자를 사용하여 광산란 및 동력학적 속도를 측정하였다. (중략)

  • PDF

Studies on the Adsorption Properties of Korean Kaolin IV The adsorption of bacteria by activated halIoysiste

  • Chung, Kyeong-Soo;Rhee, Gye-Ju
    • Archives of Pharmacal Research
    • /
    • 제10권4호
    • /
    • pp.228-231
    • /
    • 1987
  • Studies on the adsorption of four kinds of bacteria, Staphylococcus aureus, Sarcina lutea, Escherichia coli and Serratia marcescens by activated Korean Kaoline have been carried out to innovate utilization as adsosrbent preparations. In connection with particle size and size fraction, the adsorption was examined by colony counting and spectroscopy. Korean kaolin was purified from Hadong white species of preminum grade and three size fractions were derived from passage through BS # 100, #200 and # 325 mesh sieves, respectively. These were activated at $105^{\circ}$or $280^{\circ}$ for three hours and at $550^{\circ}C$ for one hours. The results indicated that the adsorbing power of Korean kaolin was superior for S. aureus and S. lutea, but E. coli and S. marcescens were not adsorbed by clays. The smaller the particle size, the greater was adsorbing power for Gram-positive bacteria. Threre appears to be justification for its investigations as an ingredient in intestinal adsorbent preparations.

  • PDF

공기 중 박테리아 포집을 위한 습식 사이클론의 CFD 해석을 이용한 설계 및 성능 평가 (Design and Performance Evaluation using Computational Fluid Dynamics (CFD) Analysis of Wetcyclones for the Collection of Airborne Bacteria)

  • 고현식;박정우;정지우;황정호
    • 한국입자에어로졸학회지
    • /
    • 제19권3호
    • /
    • pp.77-87
    • /
    • 2023
  • We present the development of a wetcyclone sampler designed for the sampling of airborne bacteria. The wetcyclone design involves a combination of two traditional cyclone shapes and computational fluid dynamics (CFD) analysis to validate its effectiveness in terms of pressure drop and collection efficiency. The wetcyclone exhibits a collection efficiency of over 90% for bacteria, specifically targeting Staphylococcus aureus. Additionally, the wetcyclone enables continuous bioaerosol sampling using a liquid medium (deionized water), demonstrating a concentration ratio exceeding >105 and a stable microbial recovery rate of 81.9%. The application of real-time quantitative polymerase chain reaction (qPCR) and the colony counting method ensures precise measurement of the concentration ratio and microbial recovery rate.

Preliminary Study on the Cloud Condensation Nuclei (CCN) Activation of Soot Particles by a Laboratory-scale Model Experiments

  • Ma, Chang-Jin;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권4호
    • /
    • pp.175-183
    • /
    • 2014
  • To visually and chemically verify the rainout of soot particles, a model experiment was carried out with the cylindrical chamber (0.2 m (D) and 4 m (H)) installing a cloud drop generator, a hydrotherometer, a particle counter, a drop collector, a diffusing drier, and an artificial soot particle distributer. The processes of the model experiment were as follows; generating artificial cloud droplets (major drop size : $12-14{\mu}m$) until supersaturation reach at 0.52%-nebulizing of soot particles (JIS Z 8901) with an average size of $0.5{\mu}m$-counting cloud condensation nuclei (CCN) particles and droplets by OPC and the fixation method (Ma et al., 2011; Carter and Hasegawa, 1975), respectively - collecting of individual cloud drops - observation of individual cloud drops by SEM - chemical identifying of residual particle in each individual droplet by SEM-EDX. After 10 minutes of the completion of soot particle inject, the number concentrations of PM of all sizes (> $0.3{\mu}m$) dramatically decreased. The time required to return to the initial conditions, i.e., the time needed to CCN activation for the fed soot particles was about 40 minutes for the PM sized from $0.3-2.0{\mu}m$. The EDX spectra of residual particles left at the center of individual droplet after evaporation suggest that the soot particles seeded into our experimental chamber obviously acted as CCN. The coexistence of soot and mineral particle in single droplet was probably due to the coalescence of droplets (i.e., two droplets embodying different particles (in here, soot and background mineral particles) were coalesced) or the particle capture by a droplet in our CCN chamber.

정수장 응집공정의 최적운전조건 결정 사례 (Experiences of Optimization of Flocculation Basins in Water Treatment Plants)

  • 한무영;정영균;박용효;김정현
    • 상하수도학회지
    • /
    • 제14권4호
    • /
    • pp.311-317
    • /
    • 2000
  • The operation of flocculation process and the evaluation thereof have been mainly based on G, t and $G{\times}t$ values which are available from design guidelines and texts. However, their suggested ranges are too wide to find the optimum condition specific to a particular water treatment plant and none of the existing method can be used to evaluate and suggest the optimum operational condition. Recently, a commercially available particle counter is found to be useful in determining the flocculation process based on the particle dynamics. The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The experiments were performed at two conventional water treatment plants in Korea, one with horizontal mechanical flocculators, and another with vertical type mechanical flocculators. In this paper, experiences to evaluate the flocculation process and to suggest the optimum operation condition will be presented. Although particle counting method is found to be beneficial compared to any other existing methods, the optimum condition is very much site-specific and should be evaluated at each water treatment plant for different conditions.

  • PDF

High rate diffusion-scale approximation for counters with extendable dead time

  • Dubi, Chen;Atar, Rami
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1616-1625
    • /
    • 2019
  • Measuring occurrence times of random events, aimed to determine the statistical properties of the governing stochastic process, is a basic topic in science and engineering, and has been the subject of numerous mathematical modeling approaches. Often, true statistical properties deviate from measured properties due to the so called dead time phenomenon, where for a certain time period following detection, the detection system is not operational. Understanding the dead time effect is especially important in radiation measurements, often characterized by high count rates and a non-reducible detector dead time (originating in the physics of particle detection). The effect of dead time can be interpreted as a suitable rarefied sequence of the original time sequence. This paper provides a limit theorem for a high rate (diffusion-scale) counter with extendable (Type II) dead time, where the underlying counting process is a renewal process with finite second moment for the inter-event distribution. The results are very general, in the sense that they refer to a general inter arrival time and a random dead time with general distribution. Following the theoretical results, we will demonstrate the applicability of the results in three applications: serially connected components, multiplicity counting and measurements of aerosol spatial distribution.

Moisture-dependent Physical Properties of Detarium microcarpum Seeds

  • Aviara, Ndubisi A.;Onaji, Mary E.;Lawal, Abubakar A.
    • Journal of Biosystems Engineering
    • /
    • 제40권3호
    • /
    • pp.212-223
    • /
    • 2015
  • Purpose: Physical properties of Detarium microcarpum seeds were investigated as a function of moisture content to explore the possibility of developing bulk handling and processing equipment. Methods: Seed size, surface area, and 1,000-seed weight were determined by measuring the three principal axes, measuring area on a graph paper, and counting and weighing seeds. Particle and bulk densities were determined using liquid displacement and weight in a measuring cylinder, respectively. Porosity was computed from particle and bulk densities. Roundness and sphericity were measured using shadowgraphs. Angle of repose and static and kinetic coefficients of friction were determined using the vertical cylindrical pipe method, an inclined plane, and a kinetic coefficient of friction apparatus. Results: In the moisture range of 8.2%-28.5% (db), the major, intermediate, and the minor axes increased from 2.95 to 3.21 cm, 1.85 to 2.61 cm, and 0.40 to 1.21 cm, respectively. Surface area, 1,000-seed weight, particle density, porosity, and angle of repose increased from 354.62 to $433.19cm^2$, 3.184 to 3.737 kg, 1060 to $1316kg/m^3$, and 30.0% to 53.1%, respectively, whereas bulk density decreased from 647.6 to $617.2kg/m^3$. Angle of repose increased from $13.9^{\circ}$ to $28.4^{\circ}$. Static and kinetic coefficients of friction varied between 0.096 and 0.638 on different structural surfaces. Conclusions: Arithmetic mean, geometric mean, and equivalent sphere effective diameters determined at the same moisture level were significantly different from each other, with the arithmetic mean diameter being greatest. Surface area, 1,000-seed weight, particle density, porosity, and angle of repose all increased linearly with moisture content. Bulk density decreased linearly with moisture content. The coefficients of friction had linear relationships with moisture content. The highest values of static and kinetic coefficients of friction were observed on galvanized steel and hessian fabric, respectively, whereas the lowest values were observed on fiberglass.