• 제목/요약/키워드: particle condition

검색결과 1,376건 처리시간 0.032초

Ignition Behavior of Single Coal Particles From Different Coal Ranks at High Heating Rate Condition

  • Lee, Dongfang;Kim, Ryang Gyoon;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.111-114
    • /
    • 2012
  • The ignition behavior of single coal particles of five kindes of coal with different ranks (low volatile bituminous, low volatile sub-bituminous, high volatile bituminous, lignite) with particle size of $150-200{\mu}m$ was investigated at high heating rate condition. Particles were injected into a laminar flow reactor and the ignition behavior was observed with high speed cinematography. Sub-bituminous were observed to ignite homogeneously; however, low volatile bituminous coal and lignite undergo fragmentation prior to igntion. The observation was analyzed with previous work.

  • PDF

경사계를 이용한 토립자 유출 관련 피해 시공 관리 사례 연구 (Case Study of Construction Management in Damage due to Soil Particle Migration Using Inclinometer Incremental Deflection)

  • 김성욱;한병원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.268-275
    • /
    • 2006
  • Excavation works of cylindrical shafts and tunnels for the construction of a variety of infrastructures have been frequently going on in the urban areas. When ground excavations of cylindrical shafts and shallow tunnels proceed in the ground condition of high water level and silt particle component, ground water drawdown involving soil particle migration causes loosening of ground around tunnels and shafts, causes settlement and deformation of ground. Damages due to ground sinking and differential settlement can occur in the adjacent ground and structures. The extent and possibility of damage relevant to ground water drawdown and soil particle migration can't be so precisely expected in advance that we will face terrible damages in case of minor carefulness. This paper introduces two examples of construction management where using incremental deformation graph of inclinometer, we noticed the possibility of soil migration due to ground water drawdown in the excavation process of vertical shaft and shallow tunnel, analysed a series of measurement data in coupled connection, properly prepared countermeasures, so came into safe and successful completion of excavation work without terrible damages. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

거제만 패류양식 해역에서의 육상기인 물질 확산에 관한 수치실험 (Numerical simulation for dispersion of anthropogenic material near shellfish growing area in Geoje Bay)

  • 김진호;이원찬;홍석진;김동명;정용현;정우성
    • 수산해양교육연구
    • /
    • 제28권3호
    • /
    • pp.831-840
    • /
    • 2016
  • Hydrodynamic condition can be used to predict particle movement within water column and the results used to optimize environmental conditions for effective site selection, setting of environmental quality standard, waste dispersion, and pathogen transfer. To predict the extent of movement of particle from land, 3D hydrodynamic model that includes particle tracking module was applied to Geoje Bay and to calibrate particle tracking model, floating buoy measurement is operated. The model results show that short time is required for particles released into system from river to be transported to the shellfish farming area. It takes about 2 days for the particles to shellfish farming area under mean flow condition. It meant Geoje Bay, especially shellfish farming area is vulnerable to anthropogenic waste from river.

Emulsion법에 의한 실리카 분말의 합성에서 반응조건이 입자의 형성에 미치는 영향 (The Effect of Reaction Condition on Particle Formation in the Synthesis of Silica Powder Using Emulsion)

  • 이상근;장윤식;문병영;강범수;박희찬
    • 한국재료학회지
    • /
    • 제15권11호
    • /
    • pp.717-721
    • /
    • 2005
  • Silica powders were synthesized using emulsion solution containing water, nonionic surfactant of Triton N-57, and cyclohexane. Silica powders were prepared at low cost using inexpensive starting material of sodium silicate and ammonium sulfate. Morphology, size and size distribution were observed and determined using SEM. The powder was identified as silica by FT-IR and XRD analysis. Particle size and size distributions were affected by concentration of reactants, reaction time, and concentration of surfactant. Particle size were increased with increasing concentration of reactants and particles became dense with increasing reaction time. As R value increased, tile particle size was increased, reached a certain value and then decreased again. The silica powders synthesized under optimum condition were spherical in shape, $0.8{\mu}m$ in average particle size, narrow in particles size distribution, and well dispersed.

$SF_6$가스 내 금속이물 존재시 절연특성 및 전계해석 (The Insulation Characteristics and The Electric Field Anlaysis by Conducting Particle in $SF_6$ Gas)

  • 조국희;이동준;곽희로
    • 조명전기설비학회논문지
    • /
    • 제15권5호
    • /
    • pp.14-19
    • /
    • 2001
  • 전계해석법을 이용하여 나타내었다. 이때 모의한 GIS 챔버내 금속이물의 위치는 전극부착시, 외함부착시 그리고 자유운동시로 하였다. 그 결과 GIS챔버의 절연파괴전계의 경우, 전극에 파티클 부착시가 가장 작게 나타났고, 파티클 자유운동시가 중간, 외함에 파티클 부착시가 가장 작게 나타남을 알 수 있었다. 또한 파티클 위치에 따른 전계해석의 경우 전극에 파티클 부착시가 가장 크게 나타났고, 파티클 자유운동시가 중간, 외함에 파티클 부착시가 가장 작게 나타났다. 이 결과는 국내 GIS의 절연설계에 설제적인 참고자료가 될 것으로 사료된다.

  • PDF

Factors affecting particle breakage of calcareous soil retrieved from South China Sea

  • Wang, Xinzhi;Shan, Huagang;Wu, Yang;Meng, Qingshan;Zhu, Changqi
    • Geomechanics and Engineering
    • /
    • 제22권2호
    • /
    • pp.173-185
    • /
    • 2020
  • Calcareous soil is originated from marine biogenic sediments and weathering of carbonate rocks. The formation history for calcareous sediment includes complex physical, biological and chemical processes. It is preferably selected as the major fill materials for hydraulic reclamation and artificial island construction. Calcareous sands possess inter pores and complex shape are liable to be damaged at normal working stress level due to its fragile nature. Thus, the engineering properties of calcareous soil are greatly affected by its high compressibility and crushability. A series of triaxial shear tests were performed on calcareous sands derived from South China Sea under different test conditions. The effects of confining pressure, particle size, grading, compactness, drainage condition, and water content on the total amount of particle breakage for calcareous soil were symmetrically investigated. The test results showed that the crushing extent of calcareous sand with full gradation was smaller than that a single particle group under the same test condition. Large grains are cushioned by surrounding small particles and such micro-structure reduces the probability of breakage for well-graded sands. The increasing tendency of particle crushing for calcareous sand with a rise in confining pressure and compactness is confirmed. It is also evident that a rise in water content enhances the amount of particle breakage for calcareous sand. However, varying tendency of particle breakage with grain size is still controversial and requires further examination.

원료 배합조건에 따른 발열보온재의 열적 특성 (Effect of Mixing Condition of Raw Materials on the Thermal Properties of the Exothermic & Insulating)

  • 김도준;신동엽;변승용;위창현;홍성훈;유병돈;오상훈
    • 소성∙가공
    • /
    • 제18권5호
    • /
    • pp.401-409
    • /
    • 2009
  • The change of the thermal properties of exothermic and insulating materials with the mixing condition of raw materials which is the most important factor for exothermic & insulating materials was investigated by using the evaluation system of the thermal properties of exothermic and insulating materials. In this study, the effect of the thermal properties of the exothermic & insulating materials such as exothermic properties, endothermic properties, insulating properties, maximum temperature of molten metal, ignition time of exothermic & insulating materials and temperature recovery time on the mixing ratio of reductant and oxidant, types of reductant, and particle sizes of reductants was examined. It could be expected to design the mixing condition of raw materials for various exothermic and insulating materials.

Localized particle boundary condition enforcements for the state-based peridynamics

  • Wu, C.T.;Ren, Bo
    • Coupled systems mechanics
    • /
    • 제4권1호
    • /
    • pp.1-18
    • /
    • 2015
  • The state-based peridynamics is considered a nonlocal method in which the equations of motion utilize integral form as opposed to the partial differential equations in the classical continuum mechanics. As a result, the enforcement of boundary conditions in solid mechanics analyses cannot follow the standard way as in a classical continuum theory. In this paper, a new approach for the boundary condition enforcement in the state-based peridynamic formulation is presented. The new method is first formulated based on a convex kernel approximation to restore the Kronecker-delta property on the boundary in 1-D case. The convex kernel approximation is further localized near the boundary to meet the condition that recovers the correct boundary particle forces. The new formulation is extended to the two-dimensional problem and is shown to reserve the conservation of linear momentum and angular momentum. Three numerical benchmarks are provided to demonstrate the effectiveness and accuracy of the proposed approach.

원료 배합조건에 따른 발열보온재의 열적 특성 (Effect of Mixing condition of raw materials on the Thermal Properties of the Exothermic & Insulating Materials)

  • 김도준;신동엽;변승용;위창현;유병돈;오상훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.118-126
    • /
    • 2009
  • The change of the thermal properties of exothermic & insulating materials with mixing condition of raw materials which is the most important factor for exothermic & insulating materials was investigated by using the evaluation system of the thermal properties of exothermic & insulating materials. In this study, the effect of the thermal properties of the exothermic & insulating materials such as exothermic properties, endothermic properties, insulating properties, maximum temperature of molten metal, ignition time of exothermic & insulating materials and temperature recovery time on the mixing ratio of reductant and oxidant, types of reductant, and particle sizes of reductants was examined. It could be expected to design the mixing condition of raw materials for various exothermic & insulating materials.

  • PDF

Localized particle boundary condition enforcements for the state-based peridynamics

  • Wu, C.T.;Ren, Bo
    • Interaction and multiscale mechanics
    • /
    • 제7권1호
    • /
    • pp.525-542
    • /
    • 2014
  • The state-based peridynamics is considered a nonlocal method in which the equations of motion utilize integral form as opposed to the partial differential equations in the classical continuum mechanics. As a result, the enforcement of boundary conditions in solid mechanics analyses cannot follow the standard way as in a classical continuum theory. In this paper, a new approach for the boundary condition enforcement in the state-based peridynamic formulation is presented. The new method is first formulated based on a convex kernel approximation to restore the Kronecker-delta property on the boundary in 1-D case. The convex kernel approximation is further localized near the boundary to meet the condition that recovers the correct boundary particle forces. The new formulation is extended to the two-dimensional problem and is shown to reserve the conservation of linear momentum and angular momentum. Three numerical benchmarks are provided to demonstrate the effectiveness and accuracy of the proposed approach.