• Title/Summary/Keyword: partially restrained

Search Result 45, Processing Time 0.025 seconds

Torsional analysis of a single-bent leaf flexure

  • Nguyen, Nghia Huu;Lim, Byoung-Duk;Lee, Dong-Yeon
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.189-198
    • /
    • 2015
  • We present a torsion analysis of single-bent leaf flexure that is partially restrained, subject to a torsional load. The theoretical equations for the torsional angle are derived using Castigliano's theorem. These equations consider the partially restrained warping, and are verified using finite element analysis (FEA). A sensitivity analysis over the length, width, and thickness is performed and verified via FEA. The results show that the errors between the theory result and the FEA result are lower than 6%. This indicates that the proposed theoretical torsional analysis with partially restrained warping is sufficiently accurate.

The Structural Economical Efficiency Evaluation of Partially Restrained Composite CFT Column-to-Beam Connection (합성반강접 CFT기둥-보 접합부 구조의 경제성 평가)

  • Kim, Sun-Hee;Bang, Jung-Seok;Park, Young-Wook;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 2012
  • This study seeks to devise a design application for a beam structure with partially restrained composite connection to a CFT column. A cost-efficient and stable component is applied by adjusting the stiffness ratio of the column connection through partially restrained composite connection. Based on a review of the structure's stability, it was confirmed that in the case of a low-rise building as a moment frame, resistance without bracing is feasible because stiffness increased by virtue of the partial restrained composite connection by composite action. In the case of a high-rise building, lateral resistance load of moment frame was approximately 10% when proper partial restrained rate was at around 60%. With considerations related to economic efficiency, the partial restriction effect of the beam component was significantly activated by the uniform load, but that of the beam activated by concentrated load was not significantly indicative. The analysis indicated that 60% partial restrained girder at the connection was the most economical in the case of uniform load. It also showed that end moments can be reduced by approximately 25%.

Optimum design of plane steel frames with PR-connections using refined plastic hinge analysis and genetic algorithm

  • Yun, Young Mook;Kang, Moon Myung;Lee, Mal Suk
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.387-407
    • /
    • 2006
  • A Genetic Algorithm (hereinafter GA) based optimum design algorithm and program for plane steel frames with partially restrained connections is presented. The algorithm was incorporated with the refined plastic hinge analysis method, in which geometric nonlinearity was considered by using the stability functions of beam-column members and material nonlinearity was considered by using the gradual stiffness degradation model that included the effects of residual stress, moment redistribution by the occurrence of plastic hinges, partially restrained connections, and the geometric imperfection of members. In the genetic algorithm, a tournament selection method and micro-GAs were employed. The fitness function for the genetic algorithm was expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions were expressed, respectively, as the weight of steel frames and the constraint functions which account for the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimum design results of two plane steel frames with fully and partially restrained connections were compared.

Buckling behaviour of plates partially restrained against rotation under stress gradient

  • Bedair, Osama K.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.383-396
    • /
    • 1996
  • In this paper, the behavior of plates partially restrained against rotation under stress gradient is investigated. As a first stage, an energy formulation is presented to model this boundary condition and a general expression is derived for the prediction of the elastic buckling of the plate under this general loading condition. The accuracy of the derived expression is compared numerically using the Galerkin method with other available data for the two limiting conditions of rotationally free and clamped boundaries. Results show that the prediction is within a 5% difference. The influence of rotational restraint and stress gradient upon the buckling load and the associated buckling mode is investigated. Numerical results show sensitivity of the buckling mode to the degree of rotational restraint and the variation of the buckling load with the stress gradient.

Effect of lateral restraint on the buckling behaviour of plates under non-uniform edge compression

  • Bedair, Osama K.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.85-104
    • /
    • 1997
  • The paper investigates the influence of lateral restraint on the buckling behaviour of plate under non-uniform compression. The unloaded edges are assumed to be partially restrained against translation in the plane of the plate and the distributions of the resulting forces acting on the plate are shown. The stability analysis is done numerically using the Galerkin method and various strategies the economize the numerical implementation are presented. Results are obtained showing the variation of the buckling load, from free edge translation to fully restrained, with unloaded edges simply supported, clamped and partially restrained against rotation for various plate aspect ratios and stress gradient coefficients. An apparent decrease in the buckling load is observed due to these destabilizing forces acting in the plate and changes in the buckling modes are observed by increasing the intensity of the lateral restraint. A comparison is made between the budding loads predicted from various formulas in stability standards based on free edge translation and the values derived from the present investigation. A difference of about 34% in the predicted buckling load and different buckling mode were found.

Limit load equations for partially restrained RC slabs

  • Olufemi, O.O.;Cheung, K.L.;Hossain, K.M.A.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.1
    • /
    • pp.1-20
    • /
    • 2005
  • The expertise required in the judicious use of nonlinear finite element (FE) packages for design-assistance purposes is not widely available to the average engineer, whose sole aim may be to obtain an estimate for a single design parameter, such as the limit load capacity of a structure. Such a parameter may be required for the design of a proposed reinforced concrete (RC) floor slab or bridge deck with a given set of geometrical and material details. This paper outlines a procedure for developing design-assistance equations for carrying out such predictions for partially restrained RC slabs under uniformly distributed loading condition, based on a database of FE results previously generated from a large number of 'numerical model' slabs. The developed equations have been used for predicting the peak loads of a number of experimental RC slabs having varying degrees of edge restraints; with results showing a reasonable degree of accuracy and low level of scatter. The simplicity of the equations makes them attractive and their successful use in the field of application reported in this paper suggest that the outlined procedure may also be extended to other classes of concrete structures.

Partially restrained beam-column weak-axis moment connections of low-rise steel structures

  • Lim, Woo-Young;Lee, Dongkeun;You, Young-Chan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.663-674
    • /
    • 2020
  • In this study, partially restrained beam-column moment joints in the weak-axis direction were examined using three large-scale specimens subject to cyclic loading in order to assess the seismic resistance of the joints of low-rise steel structures and to propose joint details based on the test results. The influence of different number of bolts on the moment joints was thoroughly investigated. It was found that the flexural capacity of the joints in the direction of weak axis was highly dependent on the number of high-tension bolts. In addition, even though the flexural connections subjected to cyclic loading was perfectly designed in accordance with current design codes, severe failure mode such as block shear failure could occur at beam flange. Therefore, to prevent excessive deformation at bolt holes under cyclic loading conditions, the holes in beam flange need to have larger bearing capacity than the required tensile force. In particular, if the thickness of the connecting plate is larger than that of the beam flange, the bearing capacity of the flange should be checked for structural safety.

Effect of Xylazine in Cattle under Rope Restrained Conditions (소의 로프보정시 Xylazine 투여가 생체반응에 미치는 영향)

  • 이동희;배춘식
    • Journal of Veterinary Clinics
    • /
    • v.18 no.3
    • /
    • pp.189-194
    • /
    • 2001
  • The aim of this study was to investigate the anti-stress effect of xylazine on rope-restrained stress using cattle. For this study we utilized biotelemetrical methods such as body temperature, heart rate and blood analysis. Twelve cows were divided into two groups as an only rope restrained group (control) and as rope-restrain+xylazine (0.05 mg/kg, IV) treated group (experimental group). Each group was under experimental environments for 24 hours before initiation of stress. The body temperature and the heart rate were checked every 5 minutes for 24 hours in two groups. We found that the core body temperature in the experimental group was higher than that of control group. We also found hat the heart rate in experimental group was significantly lower (p<0.05) than that of control group for 90 minutes after 30 minutes of rope-restrained stress. The level of the plasma cortisol of experimental group was significantly lower (p<0.05) than that of control group for 90 minutes after the rope-restrained stress was given. We performed the blood analysis to know whether rope-restrained stress affects RBC, WBC, hemoglobin, hematocrit, and platelet values or not but we could not find the significant difference between control and experimental groups. These results suggest that the administration of xylazine might partially help to reduce rope-restrained stress in cattle.

  • PDF

Seismic response and energy dissipation in partially restrained and fully restrained steel frames: An analytical study

  • Reyes-Salazar, Alfredo;Haldar, Achintya
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.459-480
    • /
    • 2001
  • The damage suffered by steel structures during the Northridge (1994) and Kobe (1995) earthquakes indicates that the fully restrained (FR) connections in steel frames did not behave as expected. Consequently, researchers began studying other possibilities, including making the connections more flexible, to reduce the risk of damage from seismic loading. Recent experimental and analytical investigations pointed out that the seismic response of steel frames with partially restrained (PR) connections might be superior to that of similar frames with FR connections since the energy dissipation at PR connections could be significant. This beneficial effect has not yet been fully quantified analytically. Thus, the dissipation of energy at PR connections needs to be considered in analytical evaluations, in addition to the dissipation of energy due to viscous damping and at plastic hinges (if they form). An algorithm is developed and verified by the authors to estimate the nonlinear time-domain dynamic response of steel frames with PR connections. The verified algorithm is then used to quantify the major sources of energy dissipation and their effect on the overall structural response in terms of the maximum base shear and the maximum top displacement. The results indicate that the dissipation of energy at PR connections is comparable to that dissipated by viscous damping and at plastic hinges. In general, the maximum total base shear significantly increases with an increase in the connection stiffness. On the other hand, the maximum top lateral displacement $U_{max}$ does not always increase as the connection stiffness decreases. Energy dissipation is considerably influenced by the stiffness of a connection, defined in terms of the T ratio, i.e., the ratio of the moment the connection would have to carry according to beam line theory (Disque 1964) and the fixed end moment of the girder. A connection with a T ratio of at least 0.9 is considered to be fully restrained. The energy dissipation behavior may be quite different for a frame with FR connections with a T ratio of 1.0 compared to when the T ratio is 0.9. Thus, for nonlinear seismic analysis, a T ratio of at least 0.9 should not be considered to be an FR connection. The study quantitatively confirms the general observations made in experimental results for frames with PR connections. Proper consideration of the PR connection stiffness and other dynamic properties are essential to predict dynamic behavior, no matter how difficult the analysis procedure becomes. Any simplified approach may need to be calibrated using this type of detailed analytical study.

Effect of Partially Restrained Connections on Seismic Risk Evaluation of Steel Frames (강 뼈대 구조물의 지진위험도 평가에 대한 부분구속 접합부의 영향)

  • 허정원;조효남
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.537-549
    • /
    • 2001
  • The effect of partially restrained(PR) connections and the uncertainties in them on the reliability of steel frames subjected to seismic loading is addressed. A stochastic finite element method(SFEM) is proposed combining the concepts of the response surface method(RSM), the finite element method(FEM), the first-order reliability method (FORM), and the iterative linear interpolation scheme. The behavior of PR connections is captured using moment-relative rotation curves, and is represented by the four-parameter Richard model. For seismic excitation, the loading, unloading, and reloading behavior at PR connections is modeled using moment-relative rotation curves and the Masing rule. The seismic loading is applied in the time domain for realistic representation. The reliability of steel frames in the presence of PR connections is calculated considering all major sources of nonlinearity. The algorithm is clarified with the help of an example.

  • PDF