• Title/Summary/Keyword: partial prestressing

Search Result 12, Processing Time 0.02 seconds

Finite element analysis of shear critical prestressed SFRC beams

  • Thomas, Job;Ramaswamy, Ananth
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.65-77
    • /
    • 2006
  • This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed concrete T-beams having a shear span to depth ratio of 2.65 and 1.59 and failing in the shear have been analyzed using 'ANSYS'. The 'ANSYS' model accounts for the nonlinear phenomenon, such as, bond-slip of longitudinal reinforcements, post-cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging of steel fibers at crack interface. The concrete is modeled using 'SOLID65'-eight-node brick element, which is capable of simulating the cracking and crushing behavior of brittle materials. The reinforcements such as deformed bars, prestressing wires and steel fibers have been modeled discretely using 'LINK8' - 3D spar element. The slip between the reinforcement (rebar, fibers) and the concrete has been modeled using a 'COMBIN39'-non-linear spring element connecting the nodes of the 'LINK8' element representing the reinforcement and nodes of the 'SOLID65' elements representing the concrete. The 'ANSYS' model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. The capability of the model to capture the critical crack regions, loads and deflections for various types of shear failures in prestressed concrete beam has been illustrated.

Static Behavior of the Prestressed Concrete Deck Slab for Steel-Concrete Composite Two-Girder Bridges (강합성 2거더교 PSC 바닥판의 정적 거동)

  • 김영진;주봉철;이정우;김병석;박성용
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.503-512
    • /
    • 2002
  • Generally, the girder spacing of the two-girder composite bridge is from 5m up to 15m. To ensure the structural safety according to Korean Bridge Design Specification, the deck depth should be from 33 cm upto 73 cm. Using the transversal prestressing strands in concrete deck, we can reduce its depth about 10%. However, there is little experience on the design and construction of prestressed concrete(PSC) decks in Korea. This paper focuses on the behaviors of PSC deck. A literature survey is performed widely. Considering the characteristics of the two-girder bridge and the construction conditions in Korea, a cast-in-place PSC deck is recommended for the two-girder bridge with 6m girder spacing. To examine its structural behaviors and safety, three partial model deck specimens(3 m$\times$5 m) with real scale are fabricated md tested. One(PS34-RS) is 34cm depth with the stiffness restraint in longitudinal edges for simulating the real bridge deck. Another(PS34-NS) is same depth without the stiffness restraint, and the other(PS28-NS) is 28cm depth with the stiffness restraint. Under the static patch loading, each specimen had a larger ultimate flexural strength than the design value. Specimens with the stiffness restraint (PS34-RS and PS28-RS) showed the punching shear failure mode and specimen without that(PS34-NS) showed the flexural failure mode.