• Title/Summary/Keyword: partial optimization

Search Result 257, Processing Time 0.035 seconds

Comparison of Dosimetrical and Radiobiological Parameters on Three VMAT Techniques for Left-Sided Breast Cancer

  • Kang, Seong-Hee;Chung, Jin-Beom;Kim, Kyung-Hyeon;Kang, Sang-Won;Eom, Keun-Yong;Song, Changhoon;Kim, In-Ah;Kim, Jae-Sung
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • Purpose: To compare the dosimetrical and radiobiological parameters among various volumetric modulated arc therapy (VMAT) techniques using restricted and continuous arc beams for left-sided breast cancer. Materials and Methods: Ten patients with left-sided breast cancer without regional nodes were retrospectively selected and prescribed the dose of 42.6 Gy in 16 fractions on the planning target volume (PTV). For each patient, three plans were generated using the $Eclipse^{TM}$ system (Varian Medical System, Palo Alto, CA) with one partial arc 1pVMAT, two partial arcs 2pVMAT, and two tangential arcs 2tVMAT. All plans were calculated through anisotropic analytic algorithm and photon optimizer with 6 MV photon beam of $VitalBEAM^{TM}$. The same dose objectives for each plan were used to achieve a fair comparison during optimization. Results: For PTV, dosimetrical parameters such as Homogeneity index, conformity index, and conformal number were superior in 2pVMAT than those in both techniques. $V_{95%}$, which indicates PTV coverage, was 91.86%, 96.60%, and 96.65% for 1pVMAT, 2pVMAT, and 2tVMAT, respectively. In most organs at risk (OARs), 2pVMAT significantly reduced the delivered doses compared with the other techniques, excluding the doses to contralateral lung. For the analysis of radiobiological parameters, a significant difference in normal tissue complication probability was observed in ipsilateral lung while no difference was observed in the other OARs. Conclusions: Our study showed that 2pVMAT had better plan quality and normal tissue sparing than 1pVMAT and 2tVMAT but not for all parameters. Therefore, 2pVMAT could be considered the priority choice for the treatment planning for left breast cancer.

PSO-Based PID Controller for AVR Systems Concerned with Design Specification (설계사양을 고려한 AVR 시스템의 PSO 기반 PID 제어기)

  • Lee, Yun-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.330-338
    • /
    • 2018
  • The proportional-integral-derivative(PID) controller has been widely used in the industry because of its robust performance and simple structure in a wide range of operating conditions. However, the AVR(Automatic Voltage Regulator) as a control system is not robust to variations of the power system parameters. Therefore, it is necessary to use PID controller to increase the stability and performance of the AVR system. In this paper, a novel design method for determining the optimal PID controller parameters of an AVR system using the particle swarm optimization(PSO) algorithm is presented. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. In order to assist estimating the performance of the proposed PSO-PID controller, a new performance criterion function is also defined. This evaluation function is intended to reflect when the maximum percentage overshoot, the settling time are given as design specifications. The ITAE evaluation function should impose a penalty if the design specifications are violated, so that the PSO algorithm satisfies the specifications when searching for the PID controller parameter. Finally, through the computer simulations, the proposed PSO-PID controller not only satisfies the given design specifications for the terminal voltage step response, but also shows better control performance than other similar recent studies.

Application of Back Analysis Technique Based on Direct Search Method to Estimate Tension of Suspension Bridge Hanger Cable (현수교 행어케이블의 장력 추정을 위한 직접탐색법 기반의 역해석 기법의 적용 )

  • Jin-Soo Kim;Jae-Bong Park;Kwang-Rim Park;Dong-Uk Park;Sung-Wan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.120-129
    • /
    • 2023
  • Hanger cable tension is a major response that can determine the integrity and safety of suspension bridges. In general, the vibration method is used to estimate hanger cable tension on operational suspension bridges. It measures natural frequencies from hanger cables and indirectly estimates tension using the geometry conditions of the hanger cables. This study estimated the hanger cable tension of the Palyeong Bridge using a vision-based system. The vision-based system used digital camcorders and tripods considering the convenience and economic efficiency of measurement. Measuring the natural frequencies for high-order modes required for the vibration method is difficult because the hanger cable response measured using the vision-based system is displacement-based. Therefore, this study proposed a back analysis technique for estimating tension using the natural frequencies of low-order modes. Optimization for the back analysis technique was performed by defining the difference between the natural frequencies of hanger cables measured in the field and those calculated using finite element analysis as the objective function. The direct search method that does not require the partial derivatives of the objective function was applied as the optimization method. The reliability and accuracy of the back analysis technique were verified by comparing the tension calculated using the method with that estimated using the vibration method. Tension was accurately estimated using the natural frequencies of low-order modes by applying the back analysis technique.

In Vitro Proliferation Model of Helicobacter pylori Required for Large-Scale Cultivation

  • Oh, Heung-Il;Lee, Heung-Shick;Kim, Kyung-Hyun;Paek, Se-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.367-374
    • /
    • 2000
  • The composition of dissolved gases and nutrients in a liquid medium were determined for establishment of the optimum conditions for in vitro culture of Helicobacter pylori. A microaerobic condition facored by the organism was prepared by adjusting the partial pressure of the gas, agitation speed, and viscosity of the medium. The gaseous concentrations were controlled by utilizing CampyPak Plus that reduced oxygen while augmenting carbon dioxide. Agitation of the broth facilitated the oxygen transfer to the cells, yet inhibited the growth at high rates. An increase of viscosity in the medium repressed the culture although this variable was relatively insignificant. The chemical constituents of the liquid broth were examined to establish an economic model for H. pylori cultivation. The microbe required a neutral pH for optimum growth, and yet was also able to proliferate in an acidic condition, presumably by releasing the acidity-modulating enzyme, urease. Cyclodextrin and casamino acid were investigated as growth enhancers in place of serum, while yeast extract unexpectedly inhibited the cells. A low concentration of glucose, the unique carbon source for the organism, increased the cell density, yet high concentrations resulted in an adverse effect. Under optimally dissolved gas conditions, the cell concentration in brucella broth supplemented with serum substitutes and glucose reached $1.6{\times}10^8$ viable cells/ml which was approximately 50% higher than that obtained in the liquid medium added with only cyclodextrin or serum.

  • PDF

Optimization of Submerged (Ginseng Root Culture Conditions for the Production of Saponin (사포닌 생산을 위한 인삼 root 액체배양조건의 최적화)

  • 오훈일;장은정;이시경
    • Journal of Ginseng Research
    • /
    • v.24 no.3
    • /
    • pp.118-122
    • /
    • 2000
  • This study was carried out to determine the optimal liquid medium composition of ginseng (Panax ginsengC.A. Meyer) root induced by growth regulators in order to improve the yield of saponin production. Submerged culture conditions were optimized using the fractional factorial design with 4 factors and 3 levels by a RSM computer program The effects of various pH values of medium, sucrose, nitrogen and phosphate concentration on the saponin content of the ginseng root were investigated. The optimum phosphate concentration determined by a partial differentiation of the model equation, pH of medium, sucrose and nitrogen concentration were phosphate 93 mg/L, pH 5.5, sucrose 5% and nitrogen 50 mg/L, respectively. Under these conditions, the predicted saponin content of ginseng root was estimated at 0.308%.

  • PDF

Prediction Acidity Constant of Various Benzoic Acids and Phenols in Water Using Linear and Nonlinear QSPR Models

  • Habibi Yangjeh, Aziz;Danandeh Jenagharad, Mohammad;Nooshyar, Mahdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.2007-2016
    • /
    • 2005
  • An artificial neural network (ANN) is successfully presented for prediction acidity constant (pKa) of various benzoic acids and phenols with diverse chemical structures using a nonlinear quantitative structure-property relationship. A three-layered feed forward ANN with back-propagation of error was generated using six molecular descriptors appearing in the multi-parameter linear regression (MLR) model. The polarizability term $(\pi_1)$, most positive charge of acidic hydrogen atom $(q^+)$, molecular weight (MW), most negative charge of the acidic oxygen atom $(q^-)$, the hydrogen-bond accepting ability $(\epsilon_B)$ and partial charge weighted topological electronic (PCWTE) descriptors are inputs and its output is pKa. It was found that properly selected and trained neural network with 205 compounds could fairly represent dependence of the acidity constant on molecular descriptors. For evaluation of the predictive power of the generated ANN, an optimized network was applied for prediction pKa values of 37 compounds in the prediction set, which were not used in the optimization procedure. Squared correlation coefficient $(R^2)$ and root mean square error (RMSE) of 0.9147 and 0.9388 for prediction set by the MLR model should be compared with the values of 0.9939 and 0.2575 by the ANN model. These improvements are due to the fact that acidity constant of benzoic acids and phenols in water shows nonlinear correlations with the molecular descriptors.

High-$J_c$ $GdBa_2Cu_3O_y$ films on $BaHfO_3$ buffered IBAD MgO template ($BaHfO_3$ 완충층을 사용한 IBAD MgO 기판 위에 제조된 고임계전류밀도의 $GdBa_2Cu_3O_y$ 박막)

  • Ko, K.P.;Lee, J.W.;Ko, R.K.;Moon, S.H.;Oh, S.S.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.6-11
    • /
    • 2011
  • The $BaHfO_3$ (BHO) buffer layer on the IBAD MgO template was turned to be effective for a successful fabrication of $GdBa_2Cu_3O_{7-{\delta}}$ (GdBCO) films with high critical current density ($J_c$). Both the BHO buffer layers and GdBCO films were prepared by pulsed laser deposition (PLD). The effects of the PLD conditions, including substrate temperature ($T_s$), oxygen partial pressure ($PO_2$), and deposition time on the in-plane texture, surface roughness, and microstructures of the BHO buffer layers on the IBAD MgO template were systematically studied for processing optimization. The c-axis oriented growth of BHO layers was insensitive to the deposition temperature and the film thickness, while the in-plane texture and surface roughness of those were improved with increasing $T_s$ from 700 to $800^{\circ}C$. On the optimally processed BHO buffer layer, the highest $J_c$ value (77 K, self-field) of 3.68 $MA/cm^2$ could be obtained from GdBCO film deposited at $780^{\circ}C$, representing that BHO is a strong candidate for the buffer layer on the IBAD MgO template.

The New Active Voltage Clamp ZVS-PWM Resonant High-frequency Inverter (새로운 액티브 전압 클램프 ZVS-PWM 공진 고주파 인버터)

  • Ahn, Yong-Wie;Kim, Hong-Shin;Mun, Sang-Pil;Woo, Kyung-Il;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.188-193
    • /
    • 2017
  • In this paper, a ZVS-PWM high-frequency inverter with a PWM control function is applied to commercial system 220[Vrms], and a resonator type ZVS-PWM high-frequency inverter circuit with a fixed-two methods were proposed. The parameters of the transformer model equivalent circuit of a copier fixing device, which is an essential element in the parameter optimization of the proposed circuit, are obtained by using a high-frequency amplifier and its frequency characteristics are described. The proposed method compared to the existing single-ended ZVS-PFM high frequency inverter can suppress the voltage and current peak value of the power semiconductor switching device and reduce the switching loss. The efficiency of the proposed method itself is 98[%] at rated power output. Also, the efficiency of 96[%] can be obtained even at low output, so that the proposed high frequency inverter is very efficient inverter. The total efficiency from the commercial AC input to the inverter output is 93[%] at rated, which is considered efficient for use in copying machines. In addition, the diode bridge loss accounts for the largest portion of the overall system efficiency distribution. On the other hand, the nonparallel filter has a very low loss.

Understanding the Properties of Cement Mortar with Employment of Stone Dust considering Particle Size Distribution (입도분포를 고려한 석분 사용에 따른 시멘트 모르타르 성질의 변화 이해)

  • Kang, Su-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.715-723
    • /
    • 2017
  • This study investigates the properties of a high-performance cementitious composite with partial substitution of stone dust for fine aggregate. The relationship between the properties and particle size distribution was analyzed using several analytical models. Experiments were carried out to examine the flowability, rheology, and strength of cement mortars with different stone-dust replacement ratios of 0-30 wt.%. The results showed improved flowability, lower rheological parameters (yield stress and plastic viscosity), and improved strength as the amount of stone dust increased. These results are closely related to the packing density of the solid particles in the mortar. The effect was therefore estimated by introducing an optimum particle size distribution (PSD) model for maximum packing density. The PSD with a higher amount of stone dust was closer to the optimum PSD, and the optimization was quantified using RMSE. The improvement in the PSD by the stone dust was proven to affect the flowability, strength, and plastic viscosity based on several relevant analytical models. The reduction in yield stress is related to the increase of the average particle diameter when using stone dust.

Low-Temperature Si and SiGe Epitaxial Growth by Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition (UHV-ECRCVD)

  • Hwang, Ki-Hyun;Joo, Sung-Jae;Park, Jin-Won;Euijoon Yoon;Hwang, Seok-Hee;Whang, Ki-Woong;Park, Young-June
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.422-448
    • /
    • 1996
  • Low-temperature epitaxial growth of Si and SiGe layers of Si is one of the important processes for the fabrication of the high-speed Si-based heterostructure devices such as heterojunction bipolar transistors. Low-temperature growth ensures the abrupt compositional and doping concentration profiles for future novel devices. Especially in SiGe epitaxy, low-temperature growth is a prerequisite for two-dimensional growth mode for the growth of thin, uniform layers. UHV-ECRCVD is a new growth technique for Si and SiGe epilayers and it is possible to grow epilayers at even lower temperatures than conventional CVD's. SiH and GeH and dopant gases are dissociated by an ECR plasma in an ultrahigh vacuum growth chamber. In situ hydrogen plasma cleaning of the Si native oxide before the epitaxial growth is successfully developed in UHV-ECRCVD. Structural quality of the epilayers are examined by reflection high energy electron diffraction, transmission electron microscopy, Nomarski microscope and atomic force microscope. Device-quality Si and SiGe epilayers are successfully grown at temperatures lower than 600℃ after proper optimization of process parameters such as temperature, total pressure, partial pressures of input gases, plasma power, and substrate dc bias. Dopant incorporation and activation for B in Si and SiGe are studied by secondary ion mass spectrometry and spreading resistance profilometry. Silicon p-n homojunction diodes are fabricated from in situ doped Si layers. I-V characteristics of the diodes shows that the ideality factor is 1.2, implying that the low-temperature silicon epilayers grown by UHV-ECRCVD is truly of device-quality.

  • PDF