Journal of the Korean Data and Information Science Society
/
제18권2호
/
pp.327-344
/
2007
다중공선성의 데이터에 사용되는 대표적인 편향회귀방법은 능형회귀(RR), 주성분회귀(PCR), 부분최소제곱회귀(PLS) 등이다. 이 회귀방법들은 계수베거 추정량의 놈(norm)이 모두 보통 최소제곱회귀(OLS)의 추정량의 놈보다 작아진다는 의미에서 축소회귀라 부른다. 새로운 회귀방법으로 RR과 PCR을 결합한 능형주성분회귀(RPCR)가 있고 RR과 PLS를 결합한 능형부분최소제곱회귀(RPLS)가 있으며 이들도 또한 축소회귀이다. 이들 추정량은 X'X의 고유벡터들의 선형결합으로 나타낼 수 있고 따라서 각 고유방향에서 OLS에 비해 얼마나 축소되는지를 연구할 수 있다. 본 논문에서는 먼저 이들 추정량을 일반적인 축소인자의 식으로 나타내고 이를 이용하여 MSE의 일반식을 구하였으며 PLS 추정량의 MSE 식도 구하였다. 그리고 RPLS의 축소인자 식을 두 가지 다른 형태로 유도하였다. RPLS의 경우도 이 축소인자 식을 MSE의 일반식에 대입하면 MSE 식이 바로 얻어진다. 그러나 PLS나 RPLS의 축소인자는 y의 복잡한 비선형이 되어 결정적이 아니므로 이들 추정량의 MSE는 근사적인 식이라 할 수 있다. 따라서 PLS나 RPLS를 평가하기 위해 이 MSE를 사용하는 것은 제한적이며, 경험적인 방법으로 이들 회귀의 수행성을 평가하는 것이 필요하다. 다중공선성의 대표적인 데이터인 근적외선 분광 데이터를 이용하여 이 유도된 회귀의 축소인자 값이 인자수에 따라 어떻게 변화하는지와 전체적인 축소 비율도 살펴보았다. 이들의 축소 형태를 잘 이해하면 회귀방법들의 예측력과 안정성을 파악하는데 많은 도움이 되리라 판단된다.
Journal of the Korean Data and Information Science Society
/
제14권2호
/
pp.355-366
/
2003
A unified procedure for principal component regression (PCR), partial least squares (PLS) and ordinary least squares (OLS) is proposed. The process gives solutions for PCR, PLS and OLS in a unified and non-iterative way. This enables us to see the interrelationships among the three regression coefficient vectors, and it is seen that the so-called E-matrix in the solution expression plays the key role in differentiating the methods. In addition to setting out the procedure, the paper also supplies a robust numerical algorithm for its implementation, which is used to show how the procedure performs on a real world data set.
마이크로어레이 유전자 발현 자료는 대용량이며 또한 관측 과정이 복잡하여 결측치가 빈번하게 발생된다. 본 논문에서는 관측 시점 간에 상관성을 갖는 시간경로 유전자 발현 자료에 대한 결측치 추정을 위하여 순차적 부분최소제곱(sequential partial least squares: SPLS) 회귀적합 방법을 제안한다. 이는 순차적 기법과 부분최소제곱(partial least squares: PLS) 회귀적합 방법을 결합시킨 것이다. 세 가지의 이스트(yeast) 시간경로 자료들에 대한 몇 가지 모의실험을 통하여 제안된 결측치 추정방법의 유용성을 평가한다.
Journal of the Korean Data and Information Science Society
/
제25권5호
/
pp.1151-1160
/
2014
In DNA microarray studies, the number of genes far exceeds the number of samples and the gene expression measures are highly correlated. Partial least squares regression (PLSR) is one of the popular methods for dimensional reduction and known to be useful for the classifications of microarray data by several studies. In this study, we suggest a modified version of the partial least squares regression to analyze gene expression data with survival information. The method is designed as a new gene selection method using PLSR with an iterative procedure of imputing censored survival time. Mean square error of prediction criterion is used to determine the dimension of the model. To visualize the data, plot for variables superimposed with samples are used. The method is applied to two microarray data sets, both containing survival time. The results show that the proposed method works well for interpreting gene expression microarray data.
Journal of the Korean Data and Information Science Society
/
제18권1호
/
pp.51-61
/
2007
Ridge regression (RR), principal component regression (PCR) and partial least squares regression (PLS) are among popular regression methods for collinear data. While RR adds a small quantity called ridge constant to the diagonal of X'X to stabilize the matrix inversion and regression coefficients, PCR and PLS use latent variables derived from original variables to circumvent the collinearity problem. One problem of PCR and PLS is that they are very sensitive to overfitting. A new regression method is presented by combining RR and PCR and PLS, respectively, in a unified manner. It is intended to provide better predictive ability and improved stability for regression models. A real-world data from NIR spectroscopy is used to investigate the performance of the newly developed regression method.
Virtual metrology (VM), a critical component of semiconductor manufacturing, is an efficient way of assessing the quality of wafers not actually measured. This is done based on a model between equipment sensor data (obtained for all wafers) and the quality characteristics of wafers actually measured. This paper considers principal component regression (PCR), partial least squares regression (PLSR), kernel PCR (KPCR), and kernel PLSR (KPLSR) as VM models. For each regression model, two cases are considered. One utilizes all explanatory variables in developing a model, and the other selects significant variables using the genetic algorithm (GA). The prediction performances of 8 regression models are compared for the short- and long-term etch process data. It is found among others that the GA-KPLSR model performs best for both types of data. Especially, its prediction ability is within the requirement for the short-term data implying that it can be used to implement VM for real etch processes.
Journal of the Korean Data and Information Science Society
/
제15권2호
/
pp.307-316
/
2004
Principal Component Regression(PCR) and Partial Least Squares Regression(PLSR) are the two most popular regression techniques in chemometrics. In the field of chemometrics usually the number of regressor variables greatly exceeds the number of observation. So we have to reduce the number of regressors to avoid the identifiability problem. In this paper we compare PCR and PLSR techniques combined with various robust regression methods including regression depth estimation. We compare the efficiency, goodness-of-fit and robustness of each estimators under several contamination schemes.
This study suggests a genetic algorithm-based partial least squares (GA-based PLS) method to select the design variables for building a usability model. The GA-based PLS uses a genetic algorithm to minimize the root-mean-squared error of a partial least square regression model. A multiple linear regression method is applied to build a usability model that contains the variables seleded by the GA-based PLS. The performance of the usability model turned out to be generally better than that of the previous usability models using other variable selection methods such as expert rating, principal component analysis, cluster analysis, and partial least squares. Furthermore, the model performance was drastically improved by supplementing the category type variables selected by the GA-based PLS in the usability model. It is recommended that the GA-based PLS be applied to the variable selection for developing a usability model.
Journal of the Korean Data and Information Science Society
/
제17권4호
/
pp.1169-1180
/
2006
Partial least squares regression (PLS) is a biased, non-least squares regression method and is an alternative to the ordinary least squares regression (OLS) when predictors are highly collinear or predictors outnumber observations. One way to understand the properties of biased regression methods is to know how the estimators shrink the OLS estimator. In this paper, we introduce an expression for the shrinkage factor of PLS and develop a new shrinkage expression, and then prove the equivalence of the two representations. We use two near-infrared (NIR) data sets to show general behavior of the shrinkage and in particular for what eigendirections PLS expands the OLS coefficients.
Journal of the Korean Data and Information Science Society
/
제22권5호
/
pp.931-940
/
2011
분류분석은 학습표본으로부터 분류규칙을 도출한 후 새로운 표본에 적용하여 특정 범주로 분류하는 방법이다. 데이터의 복잡성에 따라 다양한 분류분석 방법이 개발되어 왔지만, 데이터 차원이 높고 변수간 상관성이 높은 경우 정확하게 분류하는 것은 쉽지 않다. 본 연구에서는 데이터차원이 상대적으로 높고 변수간 상관성이 높을 때 강건한 분류방법을 제안하고자 한다. 부분최소자승법은 연속형데이터에 사용되는 기법으로서 고차원이면서 독립변수간 상관성이 높을 때 예측력이 높은 통계기법으로 알려져 있는 다변량 분석기법이다. 벌점 부분최소자승법을 이용한 분류방법을 실제데이터와 시뮬레이션을 적용하여 성능을 비교하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.