• 제목/요약/키워드: partial least squares

Search Result 619, Processing Time 0.031 seconds

Predicting Site Quality by Partial Least Squares Regression Using Site and Soil Attributes in Quercus mongolica Stands (신갈나무 임분의 입지 및 토양 속성을 이용한 부분최소제곱 회귀의 지위추정 모형)

  • Choonsig Kim;Gyeongwon Baek;Sang Hoon Chung;Jaehong Hwang;Sang Tae Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.23-31
    • /
    • 2023
  • Predicting forest productivity is essential to evaluate sustainable forest management or to enhance forest ecosystem services. Ordinary least squares (OLS) and partial least squares (PLS) regression models were used to develop predictive models for forest productivity (site index) from the site characteristics and soil profile, along with soil physical and chemical properties, of 112 Quercus mongolica stands. The adjusted coefficients of determination (adjusted R2) in the regression models were higher for the site characteristics and soil profile of B horizon (R2=0.32) and of A horizon (R2=0.29) than for the soil physical and chemical properties of B horizon (R2=0.21) and A horizon (R2=0.09). The PLS models (R2=0.20-0.32) were better predictors of site index than the OLS models (R2=0.09-0.31). These results suggest that the regression models for Q. mongolica can be applied to predict the forest productivity, but new variables may need to be developed to enhance the explanatory power of regression models.

A Study on Face Recognition based on Partial Least Squares (부분 최소제곱법을 이용한 얼굴 인식에 관한 연구)

  • Lee Chang-Beom;Kim Do-Hyang;Baek Jang-Sun;Park Hyuk-Ro
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.393-400
    • /
    • 2006
  • There are many feature extraction methods for face recognition. We need a new method to overcome the small sample problem that the number of feature variables is larger than the sample size for face image data. The paper considers partial least squares(PLS) as a new dimension reduction technique for feature vector. Principal Component Analysis(PCA), a conventional dimension reduction method, selects the components with maximum variability, irrespective of the class information. So, PCA does not necessarily extract features that are important for the discrimination of classes. PLS, on the other hand, constructs the components so that the correlation between the class variable and themselves is maximized. Therefore PLS components are more predictive than PCA components in classification. The experimental results on Manchester and ORL databases shows that PLS is to be preferred over PCA when classification is the goal and dimension reduction is needed.

Analysis of internet addiction in Korean adolescents using sparse partial least-squares regression (희소 부분 최소 제곱법을 이용한 우리나라 청소년 인터넷 중독 자료 분석)

  • Han, Jeongseop;Park, Soobin;Lee, onghwan
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.253-263
    • /
    • 2018
  • Internet addiction in adolescents is an important social issue. In this study, sparse partial least-squares regression (SPLS) was applied to internet addiction data in Korean adolescent samples. The internet addiction score and various clinical and psychopathological features were collected and analyzed from self-reported questionnaires. We considered three PLS methods and compared the performance in terms of prediction and sparsity. We found that the SPLS method with the hierarchical likelihood penalty was the best; in addition, two aggression features, AQ and BSAS, are important to discriminate and explain latent features of the SPLS model.

Partial Least Squares Based Gene Expression Analysis in EBV-Positive and EBV-Negative Posttransplant Lymphoproliferative Disorders

  • Wu, Sa;Zhang, Xin;Li, Zhi-Ming;Shi, Yan-Xia;Huang, Jia-Jia;Xia, Yi;Yang, Hang;Jiang, Wen-Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6347-6350
    • /
    • 2013
  • Post-transplant lymphoproliferative disorder (PTLD) is a common complication of therapeutic immunosuppression after organ transplantation. Gene expression profile facilitates the identification of biological difference between Epstein-Barr virus (EBV) positive and negative PTLDs. Previous studies mainly implemented variance/regression analysis without considering unaccounted array specific factors. The aim of this study is to investigate the gene expression difference between EBV positive and negative PTLDs through partial least squares (PLS) based analysis. With a microarray data set from the Gene Expression Omnibus database, we performed PLS based analysis. We acquired 1188 differentially expressed genes. Pathway and Gene Ontology enrichment analysis identified significantly over-representation of dysregulated genes in immune response and cancer related biological processes. Network analysis identified three hub genes with degrees higher than 15, including CREBBP, ATXN1, and PML. Proteins encoded by CREBBP and PML have been reported to be interact with EBV before. Our findings shed light on expression distinction of EBV positive and negative PTLDs with the hope to offer theoretical support for future therapeutic study.

Comparison of Partial Least Squares and Support Vector Machine for the Autoignition Temperature Prediction of Organic Compounds (유기물의 자연발화점 예측을 위한 부분최소자승법과 SVM의 비교)

  • Lee, Gi-Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • The autoignition temperature is one of the most important physical properties used to determine the flammability characteristics of chemical substances. Despite the needs of the experimental autoignition temperature data for the design of chemical plants, it is not easy to get the data. This study have built and compared partial least squares (PLS) and support vector machine (SVM) models to predict the autoignition temperatures of 503 organic compounds out of DIPPR 801. As the independent variables of the models, 59 functional groups were chosen based on the group contribution method. The prediction errors calculated from cross-validation were employed to determine the optimal parameters of two models. And, particle swarm optimization was used to get three parameters of SVM model. The PLS and SVM results of the average absolute errors for the whole data range from 58.59K and 29.11K, respectively, indicating that the predictive ability of the SVM is much superior than PLS.

Determination of Diazepam in Intact Diazepam Tablets Using Near Infrared Spectroscopy (근적외선 분광법을 이용한 디아제팜정에서 디아제팜의 정량)

  • Choi, Hyun Cheol;Kang, Shin Jung;Youn, Mi Ok;Lee, Su Jung;Kim, Ho Jung;Kim, Ji Yeon;Cha, Ki Won
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.243-247
    • /
    • 2002
  • A rapid and simple determination of diazepam in intact diazepam tablets has been investigated using the near infrared spectroscopy(NIRS) combined with partial least squares regession. The separate calibration curves of 2 mg and 5 mg diazepam tablets were studied, as well as the linearity, concentration range and reproducibility of those calibration curves were evaluated. The correlation coefficients of calibration curves of 2 mg and 5 mg diazepam tablets are 0.9416 and 0.9159, respectively and the standard errors of calibration curves(SEC) are 0.018% and 0.032%, respectively.

Comparative Analysis of Cultivation Region of Angelica gigas Using a GC-MS-Based Metabolomics Approach (GC-MS 기반 대사체학 기술을 응용한 참당귀의 산지비교분석)

  • Jiang, Guibao;Leem, Jae Yoon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.2
    • /
    • pp.93-100
    • /
    • 2016
  • Background: A set of logical criteria that can accurately identify and verify the cultivation region of raw materials is a critical tool for the scientific management of traditional herbal medicine. Methods and Results: Volatile compounds were obtained from 19 and 32 samples of Angelica gigas Nakai cultivated in Korea and China, respectively, by using steam distillation extraction. The metabolites were identified using GC/MS by querying against the NIST reference library. Data binning was performed to normalize the number of variables used in statistical analysis. Multivariate statistical analyses, such as Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA), and Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) were performed using the SIMCA-P software. Significant variables with a Variable Importance in the Projection (VIP) score higher than 1.0 as obtained through OPLS-DA and those that resulted in p-values less than 0.05 through one-way ANOVA were selected to verify the marker compounds. Among the 19 variables extracted, styrene, ${\alpha}$-pinene, and ${\beta}$-terpinene were selected as markers to indicate the origin of A. gigas. Conclusions: The statistical model developed was suitable for determination of the geographical origin of A. gigas. The cultivation regions of six Korean and eight Chinese A. gigas. samples were predicted using the established OPLS-DA model and it was confirmed that 13 of the 14 samples were accurately classified.

AI Technology Analysis using Partial Least Square Regression

  • Choi, JunHyeog;Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.109-115
    • /
    • 2020
  • In this paper, we propose an artificial intelligence(AI) technology analysis using partial least square(PLS) regression model. AI technology is now affecting most areas of our society. So, it is necessary to understand this technology. To analyze the AI technology, we collect the patent documents related to AI from the patent databases in the world. We extract AI technology keywords from the patent documents by text mining techniques. In addition, we analyze the AI keyword data by PLS regression model. This regression model is based on the technique of partial least squares used in the advanced analyses such as bioinformatics, social science, and engineering. To show the performance of our proposed method, we make experiments using AI patent documents, and we illustrate how our research can be applied to real problems. This paper is applicable not only to AI technology but also to other technological fields. This also contributes to understanding other various technologies by PLS regression analysis.