• Title/Summary/Keyword: partial confinement

Search Result 13, Processing Time 0.017 seconds

Compressive and flexural behaviors of ultra-high strength concrete encased steel members

  • Du, Yong;Xiong, Ming-Xiang;Zhu, Jian;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.849-864
    • /
    • 2019
  • One way to achieve sustainable construction is to reduce concrete consumption by use of more sustainable and higher strength concrete. Modern building codes do not cover the use of ultra-high strength concrete (UHSC) in the design of composite structures. Against such background, this paper investigates experimentally the mechanical properties of steel fibre-reinforced UHSC and then the structural behaviors of UHSC encased steel (CES) members under both concentric and eccentric compressions as well as pure bending. The effects of steel-fibre dosage and spacing of stirrups were studied, and the applicability of Eurocode 4 design approach was checked. The test results revealed that the strength of steel stirrups could not be fully utilized to provide confinement to the UHSC. The bond strength between UHSC and steel section was improved by adding the steel fibres into the UHSC. Reducing the spacing of stirrups or increasing the dosage of steel fibres was beneficial to prevent premature spalling of the concrete cover thus mobilize the steel section strength to achieve higher compressive capacity. Closer spacing of stirrups and adding 0.5% steel fibres in UHSC enhanced the post-peak ductility of CES columns. It is concluded that the code-specified reduction factors applied to the concrete strength and moment resistance can account for the loss of load capacity due to the premature spalling of concrete cover and partial yielding of the encased steel section.

Spalling Resistance of High Strength Concrete Using Non-Stripping Form (비탈형 거푸집에 의한 고강도 콘크리트의 폭렬방지)

  • You, Ji-Young;Han, Chang-Pyung;Jee, Suk-Won;Han, Min-Cheol;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.865-868
    • /
    • 2008
  • As a part of a series of study, this study reviewed the fire proof characteristics of high performance concrete RC column members using non-stripping form that accompanied metal lath lateral confinement to prevent spalling of high performance concrete which is increasingly used recently, and the results are as follows. Flow and air amount both satisfied target range, and compressive strength, over 80MPa at age 28 days, showed high strength range. As for spalling characteristics, in the case of plain in which no fiber is mixed, severe spalling occurred, and in the case of 0.05% nylon("NY" hereinafter)+polypropylene("PP" hereinafter) fiber mixture, only surface area experienced partial spalling. Regarding non-stripping form changes, both non-stripping 25-20 and non-stripping 50-20 experienced spalling at finish material area, and non-stripping 50-20 showed better spalling proof performance than non-stripping 25-20. In the case of non-stripping 50-40, spalling was prevented, and while mass reduction rate was less than 10%, its temperature hysteresis showed the most excellent fire proof performance with base metal surface area maximum temperature $376.1^{\circ}C$.

  • PDF

Strength and Deformation Capacities of Short Concrete Columns with Circular Section Confined by GFRP (GFRP로 구속된 원형단면 콘크리트 단주의 강도 및 변형 능력)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.121-130
    • /
    • 2007
  • To investigate the enhancement in strength and deformation capacities of concrete confined by FRP composites, tests under axial loads were carried out on three groups of thirty six short columns in circular section with diverse GFRP confining reinforcement. The major test variables considered include fiber content or orientation, wrap or tube type by varying the end loading condition, and continuous or discontinuous confinement depending on the presence of vortical spices between its two halves. The circumferential FRP strains at failure for different types of confinements were also investigated with emphasis. Various analytical models capable of predicting the ultimate strength and strain of the confined concrete were examined by comparing to observed results. Tests results showed that FRP wraps or tubes provide the substantial increase in strength and deformation, while partial wraps comprising the vertical discontinuities fail in an explosive manner with less increase in strength, particularly in deformation. A bilinear stress-strain response was observed throughout all tests with some variations of strain hardening. The failure hoop strains measured on the FRP surface were less than those obtained from the tensile coupons in all tests with a high degree of variation. In overall, existing predictive equations overestimated ultimate strengths and strains observed in present tests, with a much larger scatter related to the latter. For more accuracy, two simple design- oriented equations correlated with present tests are proposed. The strength equation was derived using the Mohr-Coulomb failure criterion, whereas the strain equation was based on entirely fitting of test data including the unconfined concrete strength as one of governing factors.