• Title/Summary/Keyword: partial band jamming

Search Result 40, Processing Time 0.019 seconds

Anti-jamming Performance Analysis of Link-16 Waveform (Link-16 웨이브폼 항재밍 성능 분석)

  • Noh, Hong-Jun;Kim, Jung-Bin;Lim, Jae-Sung;Nam, Jeong-Ho;Jang, Dhong-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1105-1112
    • /
    • 2010
  • Link-16 is a up-to-date tactical data link used in the armed forces of U.S. and NATO. In order to guarantee the required capabilities of anti-jamming and low probability of detection, Link-16 uses the techniques of frequency hopping and spreading code etc. In this paper, under Nakagami fading channels, we ananlyze the symbol error rates (SERs) of JTIDS/Link-16-type waveform based on both the single- and double-pulse schemes by considering the partial band noise jamming and the pulse jamming models, respectively.

The Higher-Order-Modulated Slow-Frequency-Hopping Spread-Spectrum System over AWGN under Partial-Band Jamming (부분 대역 재밍 하에서의 가산성 백색 가우시안 잡음 채널에서 고차 변조의 저속 주파수 도약 대역 확산 시스템)

  • Ahn, Hyoungbae;Kim, Chanki;No, Jong-Seon;Park, Jinsoo;Song, Hong-Yeop;Han, Sung Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.14-24
    • /
    • 2017
  • In this paper, we propose a new EIM(erasure insertion method) based on the average-minimal-noise-power for HOM(higher order modulation) over AWGN(additive white Gaussian noise) under PBJ(partial-band jamming). Then we design SFH/SS(slow-frequency-hopping spread-spectrum) system by applying this method and formulate the PER(packet error rate) of the system. Based on this formula, we propose a new method to set the optimal threshold of the EIM and verify it at the designed 16-QAM SFH/SS system.

Performance Analysis of the FH/CPFSK System with the Linear-Diversity under the Partial-band Jamming Noise (부분대역 재밍잡음하에서 선형다이버시티를 고려한 FH/CPFSK 시스템의 성능 분석)

  • 곽진규;박진수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.4
    • /
    • pp.721-728
    • /
    • 1994
  • In this paper, we analyzed the performances of system considering diversity for FH/CPFSK system with limiter-discrimicator detection and integrate-and-dump post-detection filtering. And, we considered thermal noise and partial-band jamming noise, intersymbol interference for all eight of the possible adjacent bit data patterns, FM noise clicks for evaluation systems. In result, the performance of FH/CPFSK system with diversity under the worst-case partial band jamming noise degraded about 5dB rather than that of without diversity when we considered the thermal noise but improved about 16dB rather than of without diversity when we ignored the thermal noise.

  • PDF

Performance Analysis of Follower Noise Jamming Considering Tracking Parameters against Frequency Hopping Signals (추적 파라미터를 고려한 주파수 도약신호 추적 잡음 재밍의 성능 분석)

  • Lee, Chi-Ho;Jo, Sung-Jin;Ryu, Jeong-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.67-75
    • /
    • 2008
  • In this paper, we analyze the performance of Follower Noise Jamming(FNJ) considering three practical tracking parameters such as tracking bandwidth, tracking time and tracking success probability. The performance of FNJ is compared with that of Partial-Band Noise Jamming(PBNJ) in terms of Symbol Error Rate(SER) at the communication receiver under the assumed typical operation model. It is observed that the performance of FNJ is non-linearly dependent on the tracking bandwidth, the tracking time and the tracking success probability. As we can easily expect, it is also observed that the performance of FNJ is better than that of the PBNJ. Finally, it is shown that, for a fixed tracking bandwidth, the combinations of the required tracking time and the tracking success probability which satisfy a certain required SER.

A New Hop-Timing Estimator with a Normalized Envelop Detector and an Early-Late Filter (정규화 포락선 검파기와 얼리-레이트 필터를 적용한 새로운 홉 타이밍 예측기)

  • Lee, Ju-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.355-361
    • /
    • 2007
  • In this paper, the hop-timing estimator, which NED and ELF are adopted to, has been proposed. The estimation performance of the proposed scheme and the conventional scheme is compared through computer simulations. The simulation results show that the new system has less hop-timing error than the conventional system in partial band noise jamming channel. The lover Eb/Nj and ratio of jamming bandwidth(rho) we, the bigger performance enhancement of the proposed system is.

A Study on the Performance of FH/FSK Including Jammer and Code Correlation Effects (Jammer와 부호 상관 효과를 고려한 FH/FSK성능 분석에 관한 연구)

  • 안중수;박진수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.5
    • /
    • pp.424-433
    • /
    • 1991
  • In the noncoherent FH/FSK system presence of the multitione jamming and noise, in the case random and 송 structures jamming model, the performance analyzed that random and struetured jamming derived error proability. It is found that error probability and performance when error corecting code used Hamming. BCH, Convolutional code under the worst case partial band jamming interference.

  • PDF

Error Rate Performance of FH/MFSK Signal with Thermal Noise in the Partial Band Jamming Environments (부분대역 재밍 환경하에서 열잡음을 고려한 FH/MFSK 신호의 오솔특성)

  • 강찬석;안중수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 1993
  • Performance analysis is very important to transmit the high quality information and to construct the optimal system for the minimze the noise from the channel of spread spectrum system. In this paper the error rate performance is analyzed with computer simulation in noncoherent frequency hopping M-qry frequency shift keying(FH/MFSk) systems with regard to thermal noise under the partial band jamming environments. AS a result, in case the thermal noise is disregarded, bit error probability of system in jamming fraction ρ and Eb/Nj(bit energy to jamming power density) is reduced with the increase of K and in worst case 32FSK system is better than 2FSK system by 3.23dB with the variatio of Eb/Nj. In case thermal noise is considered, bit error probability of system by 3.23dB with the variation of Eb/Nj. In case thermal noise is considered, bit error probability of system are reduced with the increase of K and Eb/No(bit energy to thermal noise density). Bit error probability in connection with worst case ρ is not largely influenced form over the 14dB to K=1 and 8dB to K=5 accordingly thermal noise disregarding. These results may be useful for avoiding the common vulnerabilities when the spread spectrum system is designed.

  • PDF

Performance Analysis of FH/CPFSK System in the Partial-band Jamming Noise (부분대역 재밍하에서 FH/CPFSK 시스템의 성능 분석)

  • 정근열;박진수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.4
    • /
    • pp.499-504
    • /
    • 2002
  • In this paper, we analyzed the performance of FH/CPFSK system with differential detection in thermal noise, partial-band jamming noise and adjacent interference of all eight bit pattern. The parameters to analize performances of FH/CPFSK system have been used the bit rate, modulation index and performances of FH/CPFSK system with the differential detector have been presented with the optimum correlation function. And, we were compared with performance of FH/CPFSK and FH/BFSK system. In result, we could know that bit error probability of the approximation equation and exact equation nearly accorded in the high signal-to-noise ratio. And, we have been proved that FH/CPFSK system with differential detection according to jamming fraction ${\gamma}$ was worst to 3dB than FH/CPFSK system with limiter-discriminator. but was superior to 2dB than FH/BFSK.

Anti-Jamming and Time Delay Performance Analysis of Future SATURN Upgraded Military Aerial Communication Tactical Systems

  • Yang, Taeho;Lee, Kwangyull;Han, Chulhee;An, Kyeongsoo;Jang, Indong;Ahn, Seungbeom
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3029-3042
    • /
    • 2022
  • For over half a century, the United States (US) and its coalition military aircrafts have been using Ultra High Frequency (UHF) band analog modulation (AM) radios in ground-to-air communication and short-range air-to-air communications. Evolving from this, since 2007, the US military and the North Atlantic Treaty Organization (NATO) adopted HAVE QUICK to be used by almost all aircrafts, because it had been revealed that intercepting and jamming of former aircraft communication signals was possible, which placed a serious threat to defense systems. The second-generation Anti-jam Tactical UHF Radio for NATO (SATURN) was developed to replace HAVE QUICK systems by 2023. The NATO Standardization Agreement (STANAG) 4372 is a classified document that defines the SATURN technical and operational specifications. In preparation of this future upgrade to SATURN systems, in this paper, the SATURN technical and operational specifications are reviewed, and the network synchronization, frequency hopping, and communication setup parameters that are controlled by the Network (NET) Time, Time Of Day (TOD), Word Of Day (WOD), and Multiple Word of Day (MWOD) are described in addition to SATURN Edition 3 (ED3) and future Edition 4 (ED4) basic features. In addition, an anti-jamming performance analysis (in reference to partial band jamming and pulse jamming) and the time delay queueing model analysis are conducted based on a SATURN transmitter and receiver assumed model.

Error Performance of Binary FSK Fast Frequency Hopping(BFSK/FFH) Systems in the Presence of Partial-Band Noise Jamming (부분 대역 전파 방해하에서의 바이내리 FSK 주파수 급도약 통신 시스템의 오차 성능에 관하여)

  • 홍윤기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.3
    • /
    • pp.52-60
    • /
    • 1983
  • This paper presents a complete analysis for the derivation of the probability of error for a fast (or multiple-hops per bit) frequency hopping spread spectrum system employing binary FSK modulation and noncoherent reception in the presence of partial-band noise jamming and thermal noise. The worst-case error rate performances were obtained numerically and presented as a function of E /N with L as a parameter, where E /N and L are the signal bit energy-to-jamiming density ratio and the number of hops per bit, respectively.

  • PDF