• 제목/요약/키워드: partial autocorrelation matrix

검색결과 3건 처리시간 0.015초

일반화 선형혼합모형의 임의효과 공분산행렬을 위한 모형들의 조사 및 고찰 (Survey of Models for Random Effects Covariance Matrix in Generalized Linear Mixed Model)

  • 김지영;이근백
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.211-219
    • /
    • 2015
  • 일반화 선형혼합모델은 일반적으로 경시적 범주형 자료를 분석하는데 사용된다. 이 모델에서 임의효과는 반복 측정치들의 시간에 따른 의존성을 설명한다. 임의효과 공분산행렬의 추정은 여러가지 제약조건들 때문에 쉽지 않은 문제이다. 제약조건으로는 행렬의 모수들의 수가 많으며, 또한 추정된 공분산행렬은 양정치성을 만족하여야 한다. 이러한 제한을 극복하기 위해, 임의효과 공분산행렬의 모형화를 위한 여러가지 방법이 제안되었다: 수정 단냠레스키분해, 이동평균 단냠레스키분해와 부분 자기상관행렬을 이용한 방법이 있다. 이 논문에서 위의 제안된 방법들을 소개한다.

Modeling of random effects covariance matrix in marginalized random effects models

  • Lee, Keunbaik;Kim, Seolhwa
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.815-825
    • /
    • 2016
  • Marginalized random effects models (MREMs) are often used to analyze longitudinal categorical data. The models permit direct estimation of marginal mean parameters and specify the serial correlation of longitudinal categorical data via the random effects. However, it is not easy to estimate the random effects covariance matrix in the MREMs because the matrix is high-dimensional and must be positive-definite. To solve these restrictions, we introduce two modeling approaches of the random effects covariance matrix: partial autocorrelation and the modified Cholesky decomposition. These proposed methods are illustrated with the real data from Korean genomic epidemiology study.

전립선비대증 초음파 영상에서 GLCM을 이용한 컴퓨터보조진단의 영상분석 (Image Analysis of Computer Aided Diagnosis using Gray Level Co-occurrence Matrix in the Ultrasonography for Benign Prostate Hyperplasia)

  • 조진영;김창수;강세식;고성진;예수영
    • 한국콘텐츠학회논문지
    • /
    • 제15권3호
    • /
    • pp.184-191
    • /
    • 2015
  • 전립선 초음파영상은 전립선암, 전립선비대증, 전립선염을 진단하고 전립선암의 생검과 전립선비대에서 전립선 크기 확인 등을 위해서 사용된다. 전립선비대증은 노인 남성의 가장 흔한 질병 중의 하나이다. 전립선은 주변구역, 중심구역, 이행구역과 전방 섬유근 간질부분 4개 구획으로 나누어진다. 전립선비대증은 조직학적으로 전립선 이행구역에서 결절성 증식을 동반한 요도주위의 진행성 과증식이 특징으로 이 결절로 인한 요도 폐쇄를 야기함에 따라 하부요로 증상을 유발한다. 그러므로 본 연구에서는 정상 전립선 이행구역 영상과 전립선비대 이행구역 영상에 대한 컴퓨터 알고리즘을 이용하여 정량적인 분석을 하였다. GLCM을 적용하여 정상영상 60증례와 전립선비대증영상 60증례을 분석영역($50{\times}50$ 픽셀)으로 설정하고, 각 영상에서 Autocorrelation, Contrast, Cluster Prominence, Entropy, Max Probability, Sum average 6가지 파라미터를 비교하여 분석하였다. 결과적으로 Autocorrelation, Cluster Prominence, Entropy, Sum Average 4개의 파라미터에서는 병변의 질감 검출 효율이 92-98%로 높게 나왔다. 이에 전립선 이행구역의 결절성 증식 변화를 정량적인 영상분석으로 확인 할 수 있었다. 향후 전립선비대증 진단에 있어 2차적인 수단으로 가능할 것으로 기대되며, 다양한 전립선 초음파 영상에 있어 기초 자료가 될 것으로 사료된다.