• Title/Summary/Keyword: part of speech

Search Result 433, Processing Time 0.023 seconds

A Comparative Analysis on the AAC Service Delivery System between the U.S. and Korea (미국과 한국의 AAC 서비스 전달체계 비교 분석)

  • Rhee, Kun Min;Yim, Sung-bin;Na, Da Yung
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.2
    • /
    • pp.99-105
    • /
    • 2017
  • The purpose of this study was to compare AAC service delivery system between Korea and U.S.A for appling effective 'AAC service delivery system. This delivery system complement the missing part in system of the current method and narrow blind area for system. The result of this research, increase suppling item of assistive communication device in public benefit and provide delivery system through construct infrastructure by assistive technology center, special education support center, developmental disorder support center, speech therapy center in each local area. Furthermore, assistive technology-related institute and academy develope training programs for human resources to delivery AAC service.

Detecting and correcting errors in Korean POS-tagged corpora (한국어 품사 부착 말뭉치의 오류 검출 및 수정)

  • Choi, Myung-Gil;Seo, Hyung-Won;Kwon, Hong-Seok;Kim, Jae-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.227-235
    • /
    • 2013
  • The quality of the part-of-speech (POS) annotation in a corpus plays an important role in developing POS taggers. There, however, are several kinds of errors in Korean POS-tagged corpora like Sejong Corpus. Such errors are likely to be various like annotation errors, spelling errors, insertion and/or deletion of unexpected characters. In this paper, we propose a method for detecting annotation errors using error patterns, and also develop a tool for effectively correcting them. Overall, based on the proposed method, we have hand-corrected annotation errors in Sejong POS Tagged Corpus using the developed tool. As the result, it is faster at least 9 times when compared without using any tools. Therefore we have observed that the proposed method is effective for correcting annotation errors in POS-tagged corpus.

A Part-of-Speech Tagging Using Fuzzy Network (퍼지망을 이용한 한국어 품사 태깅)

  • Kim, Jae-Hoon;Cho, Jeong-Mi;Kim, Chang-Hyun;Seo, Jung-Yun;Kim, Gil-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.593-603
    • /
    • 1993
  • 본 논문은 퍼지 망(Fuzzy Network)외 개념을 도입하여 한국어 단어의 품사 태깅에 관한 새로운 모델을 제시하고자 한다. 한국어 단어의 품사 태깅이란 여러 개의 품사를 가진 단어가 한국어 문장 속에 나타났을 때, 단어의 품사를 올바르게 결정하는 것이다. 여기서 가장 기본적인 문제는 여러 가지의 태그를 포함하고 있는 단어들의 나열을 어떻게 퍼지 망으로 표현하는가 하는 문제이다. 본 논문에서는 한국어 품사를 태깅할 때 사용한 퍼지 망을 정점(vertex)으로 단어 품사의 퍼지 집합을 표현하고, 연결선(edge)으로 품사와 품사간의 퍼지관계를 표현한다. 일단 퍼지망으로 표현되면, 퍼지망에서의 최적의 경로를 찾는 문제와 동일하게 풀 수 있다. 일반적으로 퍼지 망에서 최적의 경로를 찾는 문제는 dynamic programming 방법에 의해서 효과적으로 해결할 수 있다. 약 2만 6천개의 형태소를 실험 데이타로 하여 실험한 결과, 전체적인 품사 태깅 정확률은 95.6%로 비교적 좋은 결과를 보였다. 앞으로 좀 더 세분화된 태그 집합과 정확히 태깅된 실험 데이타로부터 추출된 소속함수를 이용한다면, 더 좋은 결과를 기대할 수 있다.

  • PDF

A Novel Model, Recurrent Fuzzy Associative Memory, for Recognizing Time-Series Patterns Contained Ambiguity and Its Application (모호성을 포함하고 있는 시계열 패턴인식을 위한 새로운 모델 RFAM과 그 응용)

  • Kim, Won;Lee, Joong-Jae;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.449-456
    • /
    • 2004
  • This paper proposes a novel recognition model, a recurrent fuzzy associative memory(RFAM), for recognizing time-series patterns contained an ambiguity. RFAM is basically extended from FAM(Fuzzy Associative memory) by adding a recurrent layer which can be used to deal with sequential input patterns and to characterize their temporal relations. RFAM provides a Hebbian-style learning method which establishes the degree of association between input and output. The error back-propagation algorithm is also adopted to train the weights of the recurrent layer of RFAM. To evaluate the performance of the proposed model, we applied it to a word boundary detection problem of speech signal.

A Hybrid N-best Part-of-Speech Tagger for English-Korean Machine Translation (영한 기계 번역을 위한 혼합형 N-best 품사 태거)

  • Lim, Heui-Seok;Kwon, Cheol-Joong;Lee, Jae-Won;Oh, Ki-Eun
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.15-19
    • /
    • 1998
  • 기계 번역 시스템에서 품사 태거의 오류는 전체번역 정확률에 결정적인 영향을 미친다. 따라서 어휘 단계의 정보만으로는 중의성 해소가 불가능한 단어에 대해서는 중의성 해소에 충분한 정보를 얻을 수 있는 구문 분석이나 의미 분석 단계까지 완전한 중의성 해소를 유보하는 N-best 품사 태거가 요구된다. 또한 N-best 품사 태거는 단어에 할당되는 평균 품사 개수를 최소화함으로써 상위 단계의 부하를 줄이는 본연의 역할을 수행하여야 한다. 본 논문은 통계 기반 품사 태깅 방법을 이용하여 N-best 후보를 선정하고, 선정된 N-best 후보에 언어 규칙을 적용하여 중의성을 감소시키거나 오류를 보정하는 혼합형 N-best 품사 태깅 방법을 제안한다 제안된 N-best 품사 태거는 6만여 단어의 영어 코퍼스에서 실험한 결과, 단어 당 평균 1.09개의 품사를 할당할 때 0.43%의 오류율을 보인다.

  • PDF

Improvement of Transformation Rule-Based Korean Part-Of-Speech Tagger (변형 규칙 기반 한국어 품사 태거의 개선)

  • Lim, Heui-Seok;Kim, Jin-Dong;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.216-221
    • /
    • 1996
  • 변형 규칙 기반 품사 태거는 태깅 규칙을 코퍼스로부터 자동 학습할 수 있고, 견고하며 태깅 결과를 이해하고 분석하기가 쉽다는 장점을 갖는다. 이에 최근 한국어 특성을 고려한 변형 규칙 기반 한국어 품사 태거가 개발되었다. 하지만 이 시스템은 오류 어절의 어휘 정보를 사용하지 않으므로 수정 가능 오류에 대한 변형 규칙이 제대로 학습되지 못하며, 변형 규칙 적용 과정에 새로운 오류를 발생시킨다는 문제점이 있다. 이에 본 논문은 오류 어절의 어휘 정보를 참조할 수 있는 세부변형 규칙 추출을 이용한 변형 규칙 기반 한국어 품사 태거의 개선 방안을 제안한다. 어휘 정보를 참조할 수 있는 세부 변형 규칙의 형태는 특정 문맥 C에서 어절 W의 어절 태그 ${\alpha}$를 어절 태그 ${\beta}$로 변형한다와 같다. 제안된 방법은 약 10만 어절 크기의 학습 코퍼스에서 57개의 세부 규칙을 학습하였고, 2만 어절 크기의 실험코퍼스에 적용한 결과 95.6%의 정확도를 보임으로써 기존의 변형 규칙 기반 품사 태거의 정확도를 약 15.4% 향상시켰다.

  • PDF

Implementation of Music Signals Discrimination System for FM Broadcasting (FM 라디오 환경에서의 실시간 음악 판별 시스템 구현)

  • Kang, Hyun-Woo
    • The KIPS Transactions:PartB
    • /
    • v.16B no.2
    • /
    • pp.151-156
    • /
    • 2009
  • This paper proposes a Gaussian mixture model(GMM)-based music discrimination system for FM broadcasting. The objective of the system is automatically archiving music signals from audio broadcasting programs that are normally mixed with human voices, music songs, commercial musics, and other sounds. To improve the system performance, make it more robust and to accurately cut the starting/ending-point of the recording, we also added a post-processing module. Experimental results on various input signals of FM radio programs under PC environments show excellent performance of the proposed system. The fixed-point simulation shows the same results under 3MIPS computational power.

TAKTAG: Two phase learning method for hybrid statistical/rule-based part-of-speech disambiguation (TAKTAG: 통계와 규칙에 기반한 2단계 학습을 통한 품사 중의성 해결)

  • Shin, Sang-Hyun;Lee, Geun-Bae;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.169-174
    • /
    • 1995
  • 품사 태깅은 형태소 분석 이후 발생한 모호성을 제거하는 것으로, 통계적 방법과 규칙에 기 반한 방법이 널리 사용되고 있다. 하지만, 이들 방법론에는 각기 한계점을 지니고 있다. 통계적인 방법인 은닉 마코프 모델(Hidden Markov Model)은 유연성(flexibility)을 지니지만, 교착어(agglutinative language)인 한국어에 있어서 제한된 윈도우로 인하여, 중의성 해결의 실마리가 되는 어휘나 품사별 제대로 참조하지 못하는 경우가 있다. 반면, 규칙에 기반한 방법은 차체가 품사에 영향을 받으므로 인하여, 새로운 태그집합(tagset)이나 언어에 대하여 유연성이나 정확성을 제공해 주지 못한다. 이러한 각기 서로 다른 방법론의 한계를 극복하기 위하여, 본 논문에서는 통계와 규칙을 통합한 한국어 태깅 모델을 제안한다. 즉 통계적 학습을 통한 통계 모델이후에 2차적으로 규칙을 자동학습 하게 하여, 통계모델이 다루지 못하는 범위의 규칙을 생성하게 된다. 이처럼 2단계의 통계와 규칙의 자동 학습단계를 거치게 됨으로써, 두개 모델의 단점을 보강한 높은 정확도를 가지는 한국어 태거를 개발할 수 있게 하였다.

  • PDF

Korean Part-of-Speech Tagging Error Correction Method Based on Statistical Decision Graph Learning (통계적 결정 그래프 학습 방법을 이용한 한국어 품사 부착 오류 수정)

  • Ryu, Won-Ho;Lee, Sang-Zoo;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.123-129
    • /
    • 2001
  • 지금까지 한국어 품사 부착을 위해 다양한 모델이 제안되었고 95% 이상의 높은 정확도를 보여주고 있다. 그러나 4-5%의 오류는 실제 응용 분야에서 많은 문제를 야기시킬 수 있다. 이러한 오류를 최소화하기 위해서는 오류를 분석하고 이를 수정할 수 있는 규칙들을 학습하여 재사용하는 방범이 효과적이다. 오류 수정 규칙을 학습하기 위한 기존의 방법들은 수동학습 방법과 자동 학습 방법으로 나눌 수 있다 수동 학습 방법은 많은 비용이 요구되는 단점이 있다. 자동 학습 방법의 경우 모두 변형규칙 기반 접근 방법을 사용하였는데 어휘 정보를 고려할 경우 탐색 공간과 규칙 적용 시간이 매우 크다는 단점이 있다. 따라서 본 논문에서는 초기 모델에 대한 오류 수정 규칙을 효율적으로 학습하기 위한 새로운 방법으로 결정 트리 학습 방법을 확장한 통계적 결정 그래프 학습 방법을 제안한다. 제안된 방법으로 두 가지 실험을 수행하였다. 초기 모델의 정확도가 높고 말뭉치의 크기가 작은 첫 번째 실험의 경우 초기 모델의 정확도 95.48%를 97.37%까지 향상시킬 수 있었다. 초기 모델의 정확도가 낮고 말뭉치 크기가 큰 두 번째 실험의 경우 초기 모델의 정확도 87.22%를 95.59%로 향상시켰다. 또한 실험을 통해 결정 트리 학습 방법에 비해 통계적 결정 그래프 학습 방법이 더욱 효과적임을 알 수 있었다.

  • PDF

Two-Level Part-of-Speech Tagging for Korean Text Using Hidden Markov Model (은닉 마르코프 모델을 이용한 두단계 한국어 품사 태깅)

  • Lee, Sang-Zoo;Lim, Heui-Suk;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.305-312
    • /
    • 1994
  • 품사 태깅은 코퍼스에 정확한 품사 정보를 첨가하는 작업이다. 많은 단어는 하나 이상의 품사를 갖는 중의성이 있으며, 품사 태깅은 지역적 문맥을 이용하여 품사 중의성을 해결한다. 한국어에서 품사 중의성은 다양한 원인에 의해서 발생한다. 일반적으로 동형 이품사 형태소에 의해 발생되는 품사 중의성은 문맥 확률과 어휘 확률에 의해 해결될 수 있지만, 이형 동품사 형태소에 의해 발생되는 품사 중의성은 상호 정보나 의미 정보가 있어야만 해결될 수 있다. 그리나, 기존의 한국어 품사 태깅 방법은 문맥 확률과 어휘 확률만을 이용하여 모든 품사 중의성을 해결하려 하였다. 본 논문은 어절 태깅 단계에서는 중의성을 최소화하고, 형태소 태깅 단계에서는 최소화된 중의성 중에서 하나를 결정하는 두단계 태깅 방법을 제시한다. 제안된 어절 태깅 방법은 단순화된 어절 태그를 이용하므로 품사 집합에 독립적이면, 대량의 어절을 소량의 의사 부류에 사상하므로 통계 정보의 양이 적다. 또한, 은닉 마르코프 모델을 이용하므로 태깅되지 않은 원시 코퍼스로부터 학습이 가능하며, 적은 수의 파라메터와 Viterbi 알고리즘을 이용하므로 태깅 속도가 효율적이다.

  • PDF