• Title/Summary/Keyword: parking control system

Search Result 144, Processing Time 0.026 seconds

A development of Intelligent Parking Control System Using Sensor-based on Arduino

  • LIM, Myung-Jae;JUNG, Dong-Kun;KWON, Young-Man
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.29-34
    • /
    • 2021
  • In this paper, for efficient parking control, in an Arduino environment, an intelligent parking control prototype was implemented to provide parking control and parking guidance information using HC-SR2O4 and RC522. The main elements of intelligent parking control are vehicle recognition sensors, parking control facilities, and integrated operating software. Whether the vehicle is parked on the parking surface may be confirmed through sensor or intelligent camera image analysis. Parking control equipment products include parking guidance and parking available display devices, vehicle number recognition cameras, and intelligent parking assistance systems. This paper applies and implements ultrasonic sensors and RFID concepts based on Arduino, recognizes registered vehicles, and displays empty spaces. When a vehicle enters a parking space to handle this function, the automatic parking management system distinguishes the registered vehicle from the external vehicle through the RC522 sensor. In addition, after checking whether the parking slot is empty, the HC-SR204 sensor is displayed through the LED so that the driver can visually check it. RFID is designed to check the parking status of the server in real time and provide the driver with optimal route service to the parking slot.

Development and Evaluation of Automatic Steering System for Parallel Parking (평행주차를 위한 자동 조향 제어시스템 개발 및 성능평가)

  • Lee, Dae Hyun;Kim, Yong Joo;Kim, Tae Hyeong;Chung, Sun Ok;Choi, Chang Hyun
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.18-26
    • /
    • 2016
  • This research is conducted to develop an automatic steering system for parallel parking, and the performance of the system was evaluated by parallel parking a conventional vehicle. The automatic steering system consisted of MDPS (motor driven power steering) to control steering, ESC (electronic stability control) to acquire wheel speed, ultrasonic sensors to recognize the parking space, and a controller to communicate and handle data. The parallel parking process using the automatic steering control consisted of parking space recognition, parking path generation, and parking path tracking. The path for parallel parking was generated based on a kinematic model of a conventional vehicle, and a PI controller was used to control the steering angle for path tracking. Parallel parking using the automatic steering control was conducted according to vehicle speed conditions. The results show that the errors on the x-axis and y-axis were below 0.54 m and 0.14 m, respectively, and the error on the steering angle was less than $1^{\circ}$. Therefore, it is possible to implement parallel parking using an automatic steering control system for conventional vehicles.

A Location Recognition System of RFID Tag for Parking Control (주차관제를 위한 RFID 태그 객체의 위치 인식 시스템)

  • Kang, Ku-An;Kim, Jin-Deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.99-107
    • /
    • 2008
  • Recently route guiding system using GPS is spread widely. In the parking management system of complex mall, RFID is mainly used to control status of parking lots. However, in a case that a vehicle only with RFID tag enters into small market-populated district with service of parking lots, there is no parking route guiding system optimized with information of real tine status of parking lots and the system only with GPS can't provide a function of using real time status of parking lots. This paper proposes a location recognizing method of RFID tag object for parking control system to integrated several parking lots in the business district and database-linked route guiding system optimized for parking. The proposed location recognizing method makes the search of optimized parking route possible by abstracting decoding order of tag and antenna number and recognizing direction of tag linked with database. Ihe implemented system that is composed of RFID tag, reader, middleware, server, parking lot clients and mobile clients shows that the proposed method works well and it will be useful for integrated parking control system.

A Study on Parking Control System for Fully Automated (완전 자동화를 위한 주차 관제 시스템에 관한 연구)

  • Ock, Injun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.79-87
    • /
    • 2019
  • The system proposed in this paper is a fully automated parking control system that can even protect users' information through blockchain. Unlike conventional parking control systems, the system consists of a web page that is accessible to people of all ages and ages, directly to the parking lot. Such a system would also benefit managers in the parking lot business. This is because it can reduce soaring labor costs and maximize the sales it can generate by operating 24 hours a day. In order to implement these systems, the web page was first designed using HTML and the API was configured using JAX-RS to invoke the API required by the web page. As a result, it created a web page that was easily accessible to anyone, built a server that could be accessed by more than 200 people at the same time, focused on personal information protection by encrypting the information of users through blockchain grafts, and designed a system that enabled users to complete payments easily. It is planning to add QR codes and GPS functions in the future and implement a function that allows one-touch information on parking lots and their vehicle information.

Auto-parking Controller of Omnidirectional Mobile Robot Using Image Localization Sensor and Ultrasonic Sensors (영상위치센서와 초음파센서를 사용한 전 방향 이동로봇의 자동주차 제어기)

  • Yun, Him Chan;Park, Tae Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.571-576
    • /
    • 2015
  • This paper proposes an auto-parking controller for omnidirectional mobile robots. The controller uses the multi-sensor system including ultrasonic sensor and camera. The several ultrasonic sensors of robot detect the distance between robot and each wall of the parking lot. The camera detects the global position of robot by capturing the image of artificial landmarks. To improve the accuracy of position estimation, we applied the extended Kalman filter with adaptive fuzzy controller. Also we developed the fuzzy control system to reduce the settling time of parking. The experimental results are presented to verify the usefulness of the proposed controller.

Integrated Parking Control System based on RFID (RFID를 이용한 통합 주차 관제 시스템)

  • Lee, Hyoun-Sup;Kim, Jin-Deog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.331-335
    • /
    • 2007
  • Among the various application to use FRID, the parking control system widely uses it recently. However, it is rare for the existing systems to integrate several parking lot in the clustered shopping center. This paper proposes the integrated parking control system based on RFID. The system searches optimal path to parking lot with due regard to the position of users who own a tag and the status of parking lots. Then, it transmits the path to mobile devices of the users. The system consists of main server, middle ware to filter and manage tag information, parking lot client to send and manage the status of each parking lot and application module of mobile devices based on WIPI for displaying the optimal path. The main server integrates these components by a database and a new method to filters and manage tag information is newly proposed for the sake of maintaining the position and the direction of the cars in the middle ware. The implemented system shows that it is highly expected to be useful in an advanced integrated parking control system.

  • PDF

A Low Power Parking Management System for Intelligent Building (인텔리전트 빌딩을 위한 저 전력 주차관리 시스템)

  • Lee, Chang-Ki;Im, Hyung-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1479-1485
    • /
    • 2012
  • The parking management system can increase driver's convenience with detailed parking information service in the parking lot. At the same time, parking management system consumes non-negligible electrical energy with large amount of sensors, displays and control modules. With the increase in the demand for green and sustainable building design all over the world, it becomes a meaningful issue for parking management system to reduce operating power. This paper presents the preliminary design and estimated results of a parking management system which is optimized to reduce the power consumption mainly on detectors and displays. The system design is based on pre-developed wireless parking detectors, Park Tile and Park Disk. The system has a number of parking space detectors, vehicle count detectors, information displays, guidance terminals and other control units. We have performed system architecture design, communication network design, parking information service scenario planning, battery life regulation and at last operating power estimation. The estimated operating power was 0.93KW per parking-slot, which is 20% of traditional systems. The estimated annual maintenance cost was 18% of traditional systems.

Parking Control for a Container Trailer Truck Using Fuzzy Theory (퍼지이론을 이용한 컨테이너 트레일러ㆍ트럭의 주차제어)

  • 박계각
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.2
    • /
    • pp.1-9
    • /
    • 1999
  • A trailer truck is a major equipment for transporting containers, and its driving is difficult due to two degrees of freedom which exist in the joint part between truck and trailer. Especially Backing a trailer truck to a parking home is a difficult exercise for all but the most skilled truck drivers. Normal driving instincts lead to erroneous movements. When watching a truck driver backing toward a parking home, one often observes the driver backing, going forward, backing again, going forward, etc., and finally backing to the desired position along the parking home. This paper discusses the design of the controller to control the steering of a trailer truck while only backing up to a parking home from an initial position. In this paper, we propose a backing up control system for a container trailer truck using fuzzy theory where the primitive fuzzy control rules are macroscopically designed using an expert's knowledge, and the control rules are regulated by LIBL(Linguistic Instruction Based Learning) to enable to back up successfully the trailer tuck to a parking home from arbitrary initial position. The validity of the proposed parking control system is shown by applying it to some initial positions on the simulator for container trailer truck.

  • PDF

Design of Backward Parking System using Fuzzy Logic (퍼지논리에 의한 후방주차 시스템 설계)

  • Hao, Yang-Hua;Kim, Tae-Kyun;Choi, Byung-Jae;Yoo, Seog-Hwan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.337-340
    • /
    • 2007
  • Recently, autonomous parking problems have attracted a great deal of attention and have been examined in many papers in the literature. In this paper we design a fuzzy logic based garage parking system which is a important part for designing a autonomous parking system. We first analysis the existed papers and design a single-input fuzzy logic control for the parking algorithm and illustrate the effectiveness of the new method via the simulation results.

  • PDF

The development of fault monitoring system for lift type parking facility (승강기식 타워주차설비 고장 모니터링 시스템 개발)

  • Lee, W.T.;Cha, J.S.;Jeong, Y.K.;Kim, K.H.;Kim, B.U.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.739-741
    • /
    • 1999
  • This paper describes the fault monitoring system for lift type tower parking facilities. This system consists of tower parking facility control panel and monitoring computer, and offers real-time monitoring of parking status and fault detection, and status data acquisition of tower parking system using graphic user interface.

  • PDF