• Title/Summary/Keyword: pareto optimal set

Search Result 80, Processing Time 0.025 seconds

Optimization of Stacking Strategies Considering Yard Occupancy Rate in an Automated Container Terminal (장치장 점유율을 고려한 자동화 컨테이너 터미널의 장치 위치 결정 전략 최적화)

  • Sohn, Min-Je;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1106-1110
    • /
    • 2010
  • This paper proposes a method of optimizing a stacking strategy for an automated container terminal using multi-objective evolutionary algorithms (MOEAs). Since the yard productivities of seaside and landside are conflicting objectives to be optimized, it is impossible to maximize them simultaneously. Therefore, we derive a Pareto optimal set instead of a single best solution using an MOEA. Preliminary experiments showed that the population is frequently stuck in local optima because of the difficulty of the given problem depending on the yard occupancy rate. To cope with this problem, we propose another method of simultaneously optimizing two problems with different difficulties so that diverse solutions can be preserved in the population. Experimental results showed the proposed method can derive better stacking policies than the compared method solving a single problem given the same computational costs.

Design of an Optimal Controller with Neural Networks for Nonminimum Phase Systems (신경 회로망을 이용한 비최소 위상 시스템의 최적 제어기 설계)

  • 박상봉;박철훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.56-66
    • /
    • 1998
  • This paper investigates a neuro-controller combined in parallel with a conventional linear controller of PID type in order to control nonminimum phase systems more efficiently. The objective is to minimize overall position errors as well as to maintain small undershooting. A costfunction is proposed with two conflict objectives. The neuro-controller is trained off-line with evolutionary programming(EP) in such a way that it becomes optimal by minimizing the given cost function through global evaluation based on desired control performance during the whole training time interval. However, it is not easy to find an optimal solution which satisfies individual objective simultaneously. With the concept of Pareto optimality and EP, we train the proposed controller more effectively and obtain a valuable set of optimal solutions. Simulation results show the efficacy of the proposed controller in a viewpoint of improvement of performance of a step response like fast settling time and small undershoot or overshoot compared with that of a conventional linear controller.

  • PDF

Optimum Structural Design of Tankers Using Multi-objective Optimization Technique (다목적함수 최적화기법을 이용한 유조선의 최적구조설계)

  • 신상훈;장창두;송하철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.591-598
    • /
    • 2002
  • In the ship structural design, the material cost of hull weight and the overall cost of construction processes should be minimized considering safety and reliability. In the past, minimum weight design has been mainly focused on reducing material cost and increasing dead weight reflect the interests of a ship's owner. But, in the past experience, the minimum weight design has been inevitably lead to increasing the construction cost. Therefore, it is necessary that the designer of ship structure should consider both structural weight and construction cost. In this point of view, multi-objective optimization technique is proposed to design the ship structure in this study. According to the proposed algorithm, the results of optimization were compared to the structural design of actual VLCC(Very Large Crude Oil Carrier). Objective functions were weight cost and construction cost of VLCC, and ES(Evolution Strategies), one of the stochastic search methods, was used as an optimization solver. For the scantlings of members and the estimations of objectives, classification rule was adopted for the longitudinal members, and the direct calculation method, GSDM(Generalized Slope Deflection Method), lot the transverse members. To choose the most economical design point among the results of Pareto optimal set, RFR(Required Freight Rate) was evaluated for each Pareto point, and compared to actual ship.

Multicriteria Optimization of Spindle Units

  • Lim Sang-Heon;Lee Choon-Man;Zverev Igor Aexeevich
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.57-62
    • /
    • 2006
  • The quality of precision spindle units (S/Us) running on rolling bearings depends strongly on their structural parameters, such as the configuration and geometry of the S/U elements and bearing preloads. When S/Us are designed, their parameters should be optimized to improve the performance characteristics. However, it is practically impossible to state perfectly a general criterion function for S/U quality. Therefore, we propose to use a multicriteria optimization based on the parameter space investigation (PSI) method We demonstrate the efficiency of the proposed method using the optimization results of high-speed S/Us.

Multiobjective Design Optimization of Brushless DC Motor (브러시리스 직류전동기의 다목적 최적설계)

  • 전연도;약미진치;이주;오재응
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.325-331
    • /
    • 2004
  • The multiobjective optimization (MO) problem usually includes the conflicting objectives and the use of conventional optimization algorithms for MO problem does not so good approach to obtain an effective optimal solution. In this paper, genetic algorithm (GA) as an effective method is used to solve such MO problem of brushless DC motor (BLDCM). 3D equivalent magnetic circuit network (EMCN) method which enables us to reduce the computational burden is also used to consider the 3D structure of BLDCM. In order to effectively obtain a set of Pareto optimal solutions in MO problem, ranking method proposed by Fonseca is applied. The objective functions are decrease of cogging torque and increase of torque respectively. The airgap length, teeth width and magnetization angle of PM are selected for the design variables. The experimental results are also shown to confirm the validity of the optimization results.

Optimum Structural Design of Panel Block Considering the Productivity (생산성을 고려한 평블록의 최적 구조 설계)

  • Lee, Joo-Sung;Kim, Jong-Mun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.139-147
    • /
    • 2007
  • The ultimate goal of structural design is to find the optimal design results which satisfies both safety and economy at the same time. Optimum design has been studied for the last several decades and is being studied. in this study, an optimum algorithm which is based on the genetic algorithm has been applied to the multi-object problem to obtain the optimum solutions which minimizes structural weight and construction cost of panel blocks in ship structures at the same time. Mathematical problems are dealt at first to justify the reliability of the present optimum algorithm. And then the present method has been applied to the panel block model which can be found in ship structures. From the present findings it has been seen that the present optimum algorithm can reasonably give the optimum design results.

A Multiobjective Process Planning of Flexible Assembly Systems with Evolutionary Algorithms (진화알고리듬을 이용한 유연조립시스템의 다목적 공정계획)

  • Shin, Kyoung Seok;Kim, Yeo Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.180-193
    • /
    • 2005
  • This paper deals with a multiobjective process planning problem of flexible assembly systems(FASs). The FAS planning problem addressed in this paper is an integrated one of the assignment of assembly tasks to stations and the determination of assembly routing, while satisfying precedence relations among the tasks and flexibility capacity for each station. In this research, we consider two objectives: minimizing transfer time of the products among stations and absolute deviation of workstation workload(ADWW). We place emphasis on finding a set of diverse near Pareto or true Pareto optimal solutions. To achieve this, we present a new multiobjective coevolutionary algorithm for the integrated problem here, named a multiobjective symbiotic evolutionary algorithm(MOSEA). The structure of the algorithm and the strategies of evolution are devised in this paper to enhance the search ability. Extensive computational experiments are carried out to demonstrate the performance of the proposed algorithm. The experimental results show that the proposed algorithm is a promising method for the integrated and multiobjective problem.

Optimization Design for Dynamic Characters of Electromagnetic Apparatus Based on Niche Sorting Multi-objective Particle Swarm Algorithm

  • Xu, Le;You, Jiaxin;Yu, Haidan;Liang, Huimin
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.660-665
    • /
    • 2016
  • The electromagnetic apparatus plays an important role in high power electrical systems. It is of great importance to provide an effective approach for the optimization of the high power electromagnetic apparatus. However, premature convergence and few Pareto solution set of the optimization for electromagnetic apparatus always happen. This paper proposed a modified multi-objective particle swarm optimization algorithm based on the niche sorting strategy. Applying to the modified algorithm, this paper guarantee the better Pareto optimal front with an enhanced distribution. Aiming at shortcomings in the closing bounce and slow breaking velocity of electromagnetic apparatus, the multi-objective optimization model was established on the basis of the traditional optimization. Besides, by means of the improved multi-objective particle swarm optimization algorithm, this paper processed the model and obtained a series of optimized parameters (decision variables). Compared with other different classical algorithms, the modified algorithm has a satisfactory performance in the multi-objective optimization problems in the electromagnetic apparatus.

Machine load prediction for selecting machines in machining (절삭가공에서의 기계선정을 위한 기계부하 예측)

  • Choi H.R.;Kim J.K.;Rho H.M.;Lee H.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.997-1000
    • /
    • 2005
  • Dynamic job shop environment requires not only more flexible capabilities of a CAPP system but higher utility of the generated process plans. In order to meet the requirements, this paper develops an algorithm that can select machines for the machining operations to be performed by predicting the machine loads. The developed algorithm is based on the multiple objective genetic algorithm that gives rise to a set of optimal solutions (in general, known as Pareto-optimal solutions). The objective shows a combination of the minimization of part movement and the maximization of machine utility balance. The algorithm is characterized by a new and efficient method for nondominated sorting, which can speed up the running time, as well as a method of two stages for genetic operations, which can maintain a diverse set of solutions. The performance of the algorithm is evaluated by comparing with another multiple objective genetic algorithm, called NSGA-II.

  • PDF

Multi-Objective Genetic Algorithm for Machine Selection in Dynamic Process Planning (동적 공정계획에서의 기계선정을 위한 다목적 유전자 알고리즘)

  • Choi, Hoe-Ryeon;Kim, Jae-Kwan;Lee, Hong-Chul;Rho, Hyung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.84-92
    • /
    • 2007
  • Dynamic process planning requires not only more flexible capabilities of a CAPP system but also higher utility of the generated process plans. In order to meet the requirements, this paper develops an algorithm that can select machines for the machining operations by calculating the machine loads. The developed algorithm is based on the multi-objective genetic algorithm that gives rise to a set of optimal solutions (in general, known as the Pareto-optimal solutions). The objective is to satisfy both the minimization number of part movements and the maximization of machine utilization. The algorithm is characterized by a new and efficient method for nondominated sorting through K-means algorithm, which can speed up the running time, as well as a method of two stages for genetic operations, which can maintain a diverse set of solutions. The performance of the algorithm is evaluated by comparing with another multiple objective genetic algorithm, called NSGA-II and branch and bound algorithm.