• Title/Summary/Keyword: parametric programming

Search Result 85, Processing Time 0.019 seconds

Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.21-31
    • /
    • 2017
  • To control the stochastic vibration of a vibration-sensitive instrument supported on a beam, the beam is designed as a sandwich structure with magneto-rheological visco-elastomer (MRVE) core. The MRVE has dynamic properties such as stiffness and damping adjustable by applied magnetic fields. To achieve better vibration control effectiveness, the optimal bounded parametric control for the MRVE sandwich beam with supported mass under stochastic and deterministic support motion excitations is proposed, and the stochastic and shock vibration suppression capability of the optimally controlled beam with multi-mode coupling is studied. The dynamic behavior of MRVE core is described by the visco-elastic Kelvin-Voigt model with a controllable parameter dependent on applied magnetic fields, and the parameter is considered as an active bounded control. The partial differential equations for horizontal and vertical coupling motions of the sandwich beam are obtained and converted into the multi-mode coupling vibration equations with the bounded nonlinear parametric control according to the Galerkin method. The vibration equations and corresponding performance index construct the optimal bounded parametric control problem. Then the dynamical programming equation for the control problem is derived based on the dynamical programming principle. The optimal bounded parametric control law is obtained by solving the programming equation with the bounded control constraint. The controlled vibration responses of the MRVE sandwich beam under stochastic and shock excitations are obtained by substituting the optimal bounded control into the vibration equations and solving them. The further remarkable vibration suppression capability of the optimal bounded control compared with the passive control and the influence of the control parameters on the stochastic vibration suppression effectiveness are illustrated with numerical results. The proposed optimal bounded parametric control strategy is applicable to smart visco-elastic composite structures under deterministic and stochastic excitations for improving vibration control effectiveness.

Knowledge Support and Automation of Paneled Building Envelopes for Complex Buildings using Script Programming

  • Park, Jungdae;Im, Jinkyu
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.85-90
    • /
    • 2015
  • Advances in the technology of computational design are giving architects and engineers the opportunity to analyze buildings with complex geometries. This study explores the optimization and automation process using the parametric design method, and uses digital tools to achieve surface representation and panelization for curved shaped office buildings. In this paper, we propose parametric algorithms of dimensional and geometric constraints using the Knowledge-ware scripts embedded in Gehry Technologies' Digital Project. The knowledge-based design methods proposed in this study can be used to systemize the knowledge possessed by experts in the form of data. Such knowledge is required to promote collaboration between designers and engineers in the process of CAD/CAE/CAM. The aim of this study is to integrate the process into design, which establishes an integrated process. This integration enables two-way feedback between design and construction data by combining the methods used in designing, engineering, and construction.

OPTIMALITY FOR MULTIOBJECTIVE FRACTIONAL VARIATIONAL PROGRAMMING

  • JO, CHEONGLAI;KIM, DOSANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.59-66
    • /
    • 2000
  • We consider a multiobjective fractional variational programming problem (P) involving vector valued functions. By using the concept of proper efficiency, a relationship between the primal problem and parametric multiobjective variational problem is indicated.

  • PDF

On a Two Dimensional Linear Programming Knapsack Problem with the Extended GUB Constrain (확장된 일반상한제약을 갖는 이차원 선형계획 배낭문제 연구)

  • Won, Joong-Yeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.25-29
    • /
    • 2001
  • We present a two dimensional linear programming knapsack problem with the extended GUB constraint. The presented problem is an extension of the cardinality constrained linear programming knapsack problem. We identify some new properties of the problem and derive a solution algorithm based on the parametric analysis for the knapsack right-hand-side. The solution algorithm has a worst case time complexity of order O($n^2logn$). A numerical example is given.

  • PDF

An incremental convex programming model of the elastic frictional contact problems

  • Mohamed, S.A.;Helal, M.M.;Mahmoud, F.F.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.431-447
    • /
    • 2006
  • A new incremental finite element model is developed to simulate the frictional contact of elastic bodies. The incremental convex programming method is exploited, in the framework of finite element approach, to recast the variational inequality principle of contact problem in a discretized form. The non-classical friction model of Oden and Pires is adopted, however, the friction effect is represented by an equivalent non-linear stiffness rather than additional constraints. Different parametric studies are worked out to address the versatility of the proposed model.

A control allocation sterategy based on multi-parametric quadratic programming algorithm

  • Jeong, Tae-Yeong;Ji, Sang-Won;Kim, Young-Bok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.2
    • /
    • pp.153-160
    • /
    • 2013
  • Control allocation is an important part of a system. It implements the function that map the desired command forces from the controller into the commands of the different actuators. In this paper, the authors present an approach for solving constrained control allocation problem in vessel system by using multi-parametric quadratic programming (mp-QP) algorithm. The goal of mp-QP algorithm applied in this study is to compute a solution to minimize a quadratic performance index subject to linear equality and inequality constraints. The solution can be pre-computed off-line in the explicit form of a piecewise linear (PWL) function of the generalized forces and constrains. The efficiency of mp-QP approach is evaluated through a dynamic positioning simulation for a vessel by using four tugboats with constraints about limited pushing forces and found to work well.

On a Two Dimensional Linear Programming Knapsack Problem with the Generalized GUB Constraint (일반화된 일반상한제약을 갖는 이차원 선형계획 배낭문제 연구)

  • Won, Joong-Yeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.3
    • /
    • pp.258-263
    • /
    • 2011
  • We study on a generalization of the two dimensional linear programming knapsack problem with the extended GUB constraint, which was presented in paper Won(2001). We identify some new parametric properties of the generalized problem and derive a solution algorithm based on the identified parametric properties. The solution algorithm has a worst case time complexity of order O($n^2logn$), where n is the total number of variables. We illustrate a numerical example.