• Title/Summary/Keyword: parametric numerical simulation

Search Result 226, Processing Time 0.024 seconds

A Study on the Optimum Design for the Discharge Port of a R410A Rotary Compressor (R410A 로타리 압축기의 토출구 최적설계에 관한 연구)

  • 김현진;이태진;박신규;황인수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1245-1254
    • /
    • 2001
  • For a R410A-rolling piston type rotary compressor model which was modified by reducing the cylinder height and shaft eccentricity from R22-compressor version, numerical simulation has been carried out and simulation results have been found to be compared fairly well with those of measurements. EER of this first version of R410A compressor was 4.8% lower than that of R22 compressor. To improve the performance of the R410A compressor model, parametric study on the design parameters related to the discharge port system has been performed by using the numerical simulation program, and optimum conditions for the highest EER have been obtained with the aid of Taguchi method. With the optimized discharge port configuration, EER has been improved by 1.7%.

  • PDF

Numerical simulation of concrete confined by transverse reinforcement

  • Song, Zhenhuan;Lu, Yong
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.23-41
    • /
    • 2011
  • The behaviour of concrete confined by transverse reinforcement is a classical topic. Numerous studies have been conducted to establish the stress-strain relationships for concrete under various confining reinforcement arrangements. Many empirical and semi-empirical formulas exist. Simplified analytical models have also been proposed to evaluate the increase in the strength and ductility of confined concrete. However, relatively few studies have been conducted to utilise advanced computational models for a realistic simulation of the behaviour of concrete confined by transverse reinforcement. As a matter of fact, high fidelity simulations using the latest numerical solvers in conjunction with advanced material constitutive models can be a powerful means to investigating the mechanisms underlying the confining effects of different reinforcement schemes. This paper presents a study on the use of high fidelity finite element models for the investigation of the behaviour of concrete confined by stirrups, as well as the interpretation of the numerical results. The development of the models is described in detail, and the essential modelling considerations are discussed. The models are then validated by simulating representative experimental studies on short columns with different confining reinforcement schemes. The development and distribution of the confining stress and the subsequent increase in the axial strength are examined. The models are shown to be capable of reproducing the behaviour of the confined concrete realistically, paving a way for systematic parametric studies and investigation into complicated confinement, load combination, and dynamic loading situations.

Numerical Simulation of Ground Heat Exchanger Embedded Pile Considering Unsaturated Soil Condition (불포화 지반 조건을 고려한 파일 매입형 열교환기의 수치해석)

  • Choi, Jung-Chan;Lee, Seung-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.213-220
    • /
    • 2010
  • This study presents a numerical simulation model of vertical ground heat exchangers, considering unsaturated hydro static ground conditions induced by the ground water table fluctuation. Heat transfer in ground and grout is modeled by a 3-D FEM transient conductive heat transfer model, where heat transfer between circulating fluid and heat exchanging pipe is treated as 1-D quasi steady state forced convective elements. To take into account the unsaturated ground condition, soil thermal conductivity and heat capacity which are dependent on the matric suction are applied to ground elements. Parametric studies considering various ground water table conditions are conducted to investigate the influence of unsaturated hydro static ground condition on the mean heat exchange rate of ground heat exchanger. Simulation results considering water table fluctuation show 60~100% of mean heat exchange rate for a saturated soil condition and 125~208% of that for a dry soil condition. Thus consideration of unsaturated soil condition is substantially recommended for more accurate design and performance evaluation for ground heat exchangers.

  • PDF

Unified modelling approach with concrete damage plasticity model for reliable numerical simulation: A study on thick flat plates under eccentric loads

  • Mohamed H. El-Naqeeb;Reza Hassanli
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.307-328
    • /
    • 2024
  • The concrete damage plasticity (CDP) model is widely used to simulate concrete behaviour using either implicit or explicit analysis methods. To effectively execute the models and resolve convergence issues in implicit analysis, activating the viscosity parameter of this material model is a common practice. Despite the frequent application of implicit analysis to analyse concrete structures with the CDP model, the viscosity parameter significantly varies among available models and lacks consistency. The adjustment of the viscosity parameter at the element/structural level disregards its indirect impact on the material. Therefore, the accuracy of the numerical model is confined to the validated range and might not hold true for other values, often explored in parametric studies subsequent to validations. To address these challenges and develop a unified numerical model for varied conditions, a quasi-static analysis using the explicit solver was conducted in this study. Fifteen thick flat plates tested under load control with different geometries and different eccentric loads were considered to verify the accuracy of the model. The study first investigated various concrete material behaviours under compression and tension as well as the concrete tensile strength to identify the most reliable models from previous methodologies. The study compared the results using both implicit and explicit analysis. It was found that, in implicit analysis, the viscosity parameter should be as low as 0.0001 to avoid affecting material properties. However, at the structural level, the optimum value may need adjustment between 0.00001 to 0.0001 with changing geometries and loading type. This observation raises concerns about further parametric study if the specific value of the viscosity parameter is used. Additionally, activating the viscosity parameter in load control simulations confirmed its inability to capture the peak load. Conversely, the unified explicit model accurately simulated the behaviour of the test specimens under varying geometries, load eccentricities, and column sizes. This study recommends restricting implicit solutions to the viscosity values proposed in this research. Alternatively, for highly nonlinear problems under load control simulation, explicit analysis stands as an effective approach, ensuring unified parameters across a wide range of applications without convergence problems.

Numerical simulation of columns with un-bonded reinforcing bars for crack control

  • Chen, G.;Fukuyama, H.;Teshigawara, M.;Etoh, H.;Kusunoki, K.;Suwada, H.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.409-426
    • /
    • 2007
  • Following previous work carried out in Building Research Institute in Japan, finite element analyses of conceptual column designs are performed in this paper. The effectiveness of the numerical model is evaluated by experimental tests and parametric studies are conducted to determine influential factors in conceptual column designs. First, three different column designs are analysed: bonded, un-bonded, and un-bonded with additional reinforcing bars. The load-displacement curves and cracking patterns in concrete are obtained and compared with experimental ones. The comparisons indicate that the finite element model is able to reflect the experimental results closely. Both numerical and experimental results show that, the introduction of un-bonded zones in a column end can reduce cracking strains, accordingly reduce the stiffness and strength as well; the addition of extra reinforcement in the un-bonded zones can offset the losses of the stiffness and strength. To decide the proper length of the un-bonded zones and the sufficient amount of the additional reinforcing bars, parametric studies are carried out on their influences. It has been found that the stiffness of un-bonded designs slightly decreases with increasing the length of the un-bonded zones and increases with the size of the additional reinforcing bars.

A Parametric Study on the Springback Considering the Stress Variability in Explicit Finite Element Analysis (외연적 유한요소해석에서의 응력 변동성을 고려한 스프링백 영향 인자 연구)

  • Lee K. D.;Kwon J. W.;Jun B. H.;Kim S. J.;Kim H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.136-140
    • /
    • 2000
  • It is desirable to predict springback quantitatively and accurately for the tool and process design in sheet stamping operations, however, it is blown very difficult. The result of springback analysis by the finite element method is sensitively influenced by numerical factors such as blank element size, number of integration point, punch velocity, contact algorithm etc. In the present work, a parametric study by Taguchi method is performed in order to evaluate the influence of numerical factors on springback Quantitatively and to obtain the combination of numerical factors which yields the best approximation to experimental data. Since springback is determined by the residual stress after forming process, it is important to evaluate stress distribution accurately. The oscillation in the time history curve of stress obtained by explicit FEM says that the stress solution at termination time is in very unstable state. Therefore, a variability study is also carried out in this study in order to assess the stability of implicit springback analysis starting from the stress solution by explicit forming simulation. The 2D draw bending process, one of the NUMISHEET '93 benchmark problems, is adopted as an application model.

  • PDF

Parametric study on the structural behaviour of composite slim floors with hollow-core slabs

  • Spavier, Patricia T.S.;Kataoka, Marcela N.;El Debs, Ana Lucia H.C.
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.497-506
    • /
    • 2021
  • Steel-concrete composite structures and precast concrete elements have a common prefabrication process and allow fast construction. The use of hollow-core slabs associated with composite floors can be advantageous. However, there are few studies on the subject, impeding the application of such systems. In this paper, a numerical model representing the considered system using the FE (finite element)-based software DIANA is developed. The results of an experimental test were also presented in Souza (2016) and were used to validate the model. Comparisons between the numerical and test results were performed in terms of the load versus displacement, load versus slip, and load versus strain curves, showing satisfactory agreement. In addition, a wide parametric study was performed, evaluating the influence of several parameters on the behaviour of the composite system: The strength of the steel beam, thickness of the web, thickness and width of the bottom flange of the steel beam and concrete cover thickness on top of the beam. The results indicated a great influence of the steel strength and the thickness of the bottom flange of the steel beam on the capacity of the composite floor. The remaining parameters had limited influences on the results.

Parametric Study with the Different Size of Meshes in Numerical Analysis Considering the Dynamic Soil-Pile Interactions (지반-말뚝 동적 상호 작용을 고려한 말뚝의 수치 모델링 : 메쉬 크기와 형상에 대한 매개 변수 연구)

  • Na, Seon-Hong;Kim, Seong-Hwan;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1441-1446
    • /
    • 2009
  • Numerical analysis is a powerful method in evaluating the soil-pile-structure interaction under the dynamic loading, and this approach has been applied to the practical area due to the development of computer technology. Finite Difference Method, one of the most popular numerical methods, is sensitive to the shape and the number of mesh. However, the trial and error approach is conducted to obtain the accurate results and the reasonable simulation time because of the lack of researches about mesh size and the number. In this study, FLAC 3D v3.1 program(FDM) is used to simulate the dynamic pile model tests, and the numerical results are compared with the 1G shaking table tests results. With the different size and shape of mesh, the responses of pile behavior and the simulation time are estimated, and the optimum mesh sizes in dynamic analysis of single pile is studied.

  • PDF

Parametric identification of a cable-stayed bridge using least square estimation with substructure approach

  • Huang, Hongwei;Yang, Yaohua;Sun, Limin
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.425-445
    • /
    • 2015
  • Parametric identification of structures is one of the important aspects of structural health monitoring. Most of the techniques available in the literature have been proved to be effective for structures with small degree of freedoms. However, the problem becomes challenging when the structure system is large, such as bridge structures. Therefore, it is highly desirable to develop parametric identification methods that are applicable to complex structures. In this paper, the LSE based techniques will be combined with the substructure approach for identifying the parameters of a cable-stayed bridge with large degree of freedoms. Numerical analysis has been carried out for substructures extracted from the 2-dimentional (2D) finite element model of a cable-stayed bridge. Only vertical white noise excitations are applied to the structure, and two different cases are considered where the structural damping is not included or included. Simulation results demonstrate that the proposed approach is capable of identifying the structural parameters with high accuracy without measurement noises.

A Numerical Analysis for Optimal Design of Road Generator System (도로용 발전장치 최적화 설계를 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.163-173
    • /
    • 2014
  • In this study, a modeling method is based on representing a road generation system with several rigid bodies, i.e, pad, shaft, torsional damper, oneway-clutch, gear system, and electricity generator. The simulation software is developed to evaluate the performance of a road generation system. It is used to determine parametric dimension for optimal design with the theoretically calculated results from the simulation software. The parametric dimensions are included as capacity, length, and angle of equipment. The transient responses at the conditions of low and high vehicle speed are compared with the calculated results as torque, power, out energy etc. Consequently, before manufacturing system, the analysis of simulation results shows that the proposed concept and system has efficiency and confidence.