• Title/Summary/Keyword: parametric equations

Search Result 545, Processing Time 0.026 seconds

Dynamic characteristics of viscoelastic nanobeams including cutouts

  • Rabab A. Shanab;Norhan A. Mohamed;Mohamed A. Eltaher;Alaa A. Abdelrahman
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.45-65
    • /
    • 2023
  • This paper aimed to investigate the nonclassical size dependent free vibration behavior of regularly squared cutout viscoelastic nanobeams. The nonlocal strain gradient elasticity theory is modified and adopted to incorporate the viscoelasticity effect. The Kelvin Voigt viscoelastic model is adopted to model the linear viscoelastic constitutive response. To explore the influence of shear deformation effect due to cutout, both Euler Bernoulli and Timoshenko beams theories are considered. The Hamilton principle is utilized to derive the dynamic equations of motion incorporating viscoelasticity and size dependent effects. Closed form solutions for the resonant frequencies for both perforated Euler Bernoulli nanobeams (PEBNB) and perforated Timoshenko nanobeams (PTNB) are derived considering different boundary conditions. The developed procedure is verified by comparing the obtained results with the available results in the literature. Parametric studies are conducted to show the influence of the material damping, the perforation, the material and the geometrical parameters as well as the boundary and loading conditions on the dynamic behavior of viscoelastic perforated nanobeams. The proposed procedure and the obtained results are supportive in the analysis and design of perforated viscoelastic NEMS structures.

Closed-form and numerical solution of the static and dynamic analysis of coupled shear walls by the continuous method and the modified transfer matrix method

  • Mao C. Pinto
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.49-68
    • /
    • 2023
  • This study investigates the static and dynamic structural analysis of symmetrical and asymmetrical coupled shear walls using the continuous and modified transfer matrix methods by idealizing the coupled shear wall as a three-field CTB-type replacement beam. The coupled shear wall is modeled as a continuous structure consisting of the parallel coupling of a Timoshenko beam in tension (with axial extensibility in the shear walls) and a shear beam (replacing the beam coupling effect between the shear walls). The variational method using the Hamilton principle is used to obtain the coupled differential equations and the boundary conditions associated with the model. Using the continuous method, closed-form analytical solutions to the differential equation for the coupled shear wall with uniform properties along the height are derived and a numerical solution using the modified transfer matrix is proposed to overcome the difficulty of coupled shear walls with non-uniform properties along height. The computational advantage of the modified transfer matrix method compared to the classical method is shown. The results of the numerical examples and the parametric analysis show that the proposed analytical and numerical model and method is accurate, reliable and involves reduced processing time for generalized static and dynamic structural analysis of coupled shear walls at a preliminary stage and can used as a verification method in the final stage of the project.

Cyclic behavior of self-centering braces utilizing energy absorbing steel plate clusters

  • Jiawang Liu;Canxing Qiu
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.523-537
    • /
    • 2023
  • This paper proposed a new self-centering brace (SCB), which consists of four post-tensioned (PT) high strength steel strands and energy absorbing steel plate (EASP) clusters. First, analytical equations were derived to describe the working principle of the SCB. Then, to investigate the hysteretic performance of the SCB, four full-size specimens were manufactured and subjected to the same cyclic loading protocol. One additional specimen using only EASP clusters was also tested to highlight the contribution of PT strands. The test parameters varied in the testing process included the thickness of the EASP and the number of EASP in each cluster. Testing results shown that the SCB exhibited nearly flag-shape hysteresis up to expectation, including excellent recentering capability and satisfactory energy dissipating capacity. For all the specimens, the ratio of the recovered deformation is in the range of 89.6% to 92.1%, and the ratio of the height of the hysteresis loop to the yielding force is in the range of 0.47 to 0.77. Finally, in order to further understand the mechanism of the SCB and provide additional information to the testing results, the high-fidelity finite element (FE) models were established and the numerical results were compared against the experimental data. Good agreement between the experimental, numerical, and analytical results was observed, and the maximum difference is less than 12%. Parametric analysis was also carried out based on the validated FE model to evaluate the effect of some key parameters on the cyclic behavior of the SCB.

Thermoelastic eigenfrequency of pre-twisted FG-sandwich straight/curved blades with rotational effect

  • Souvik S. Rathore;Vishesh R. Kar;Sanjay
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.519-533
    • /
    • 2023
  • This work focuses on the dynamic analysis of thermal barrier coated straight and curved turbine blades modelled as functionally graded sandwich panel under thermal environment. The pre- twisted straight/curved blade model is considered to be fixed to the hub and, the complete assembly of the hub and blade are assumed to be rotating. The functionally graded sandwich composite blade is comprised of functionally graded face-sheet material and metal alloy core. The constituents' material properties are assumed to be temperature-dependent, however, the overall properties are evaluated using Voigt's micromechanical scheme in conjunction with the modified power-law functions. The blade model kinematics is based on the equivalent single-layer shear deformation theory. The equations of motion are derived using the extended Hamilton's principle by including the effect of centrifugal forces, and further solved via 2D- isoparametric finite element approximations. The mesh refinement and validation tests are performed to illustrate the stability and accurateness of the present model. In addition, frequency characteristics of the pre-twisted rotating sandwich blades are computed under thermal environment at various sets of parametric conditions such as twist angles, thickness ratios, aspect ratios, layer thickness ratios, volume fractions, rotational velocity and blade curvatures which can be further useful for designing the blade type structures under turbine operating conditions.

Nonlocal strain gradient theory for bending analysis of 2D functionally graded nanobeams

  • Aicha Bessaim;Mohammed Sid Ahmed Houari;Smain Bezzina;Ali Merdji;Ahmed Amine Daikh;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.731-738
    • /
    • 2023
  • This article presents an analytical approach to explore the bending behaviour of of two-dimensional (2D) functionally graded (FG) nanobeams based on a two-variable higher-order shear deformation theory and nonlocal strain gradient theory. The kinematic relations are proposed according to novel trigonometric functions. The material gradation and material properties are varied along the longitudinal and the transversal directions. The equilibrium equations are obtained by using the virtual work principle and solved by applying Navier's technique. A comparative evaluation of results against predictions from literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis checks for the sensitivity of the bending and stresses response of (2D) FG nanobeams to nonlocal length scale, strain gradient microstructure scale, material distribution and geometry.

Effect of boundary mobility on nonlinear pulsatile-flow induced dynamic instability of FG pipes

  • Zhoumi Wang;Yiru Ren;Qingchun Meng
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.751-764
    • /
    • 2023
  • In practical engineering such as aerial refueling pipes, the boundary of the fluid-conveying pipe is difficult to be completely immovable. Pipes under movable and immovable boundaries are controlled by different dominant nonlinear factors, where the boundary mobility will affect the nonlinear dynamic characteristics, which should be focused on for adopting different strategies for vibration suppression and control. The nonlinear dynamic instability characteristics of functionally graded fluid-conveying pipes lying on a viscoelastic foundation under movable and immovable boundary conditions are systematically studied for the first time. Nonlinear factors involving nonlinear inertia and nonlinear curvature for pipes with a movable boundary as well as tensile hardening and nonlinear curvature for pipes with an immovable boundary are comprehensively considered during the derivation of the governing equations of the principal parametric resonance. The stability boundary and amplitude-frequency bifurcation diagrams are obtained by employing the two-step perturbation- incremental harmonic balance method (TSP-IHBM). Results show that the movability of the boundary of the pipe has a great influence on the vibration amplitude, bifurcation topology, and the physical meanings of the stability boundary due to different dominant nonlinear factors. This research has guidance significance for nonlinear dynamic design of fluid-conveying pipe with avoiding in the instability regions.

Service ability design of vibrating chiral SWCNTs: Validation and parametric study

  • Muzamal Hussain;Mohamed R. Ali;Abdelhakim Benslimane;Humaira Sharif;Mohamed A. Khadimallah;Muhammad Nawaz Naeem;Imene Harbaoui;Sofiene Helaili;Aqib Majeed;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.393-398
    • /
    • 2023
  • This paper provides the free vibrations of chiral carbon nanotubes. The governing equations of Flügge theory is considered for vibration frequencies of chiral single walled carbon nanotubes. The solution of frequency equation is obtained from a novel model for better representation of stubby and short vibration characteristics of chiral tubes with clamped-clamped and clamped-simply supported end conditions. For the harmonic response of this tube, the model displacement function is adopted. The variational approach Rayleigh-Ritz method with kinetic and strain energies are used. The Lagragian function is differentiated with respect to unknown functions. The frequency equation is written in compact form to solve with MATLAB software. The frequencies of chiral SWCNTs for first ten aspect ratios as small level are investigated. The results shown as for decreasing the aspect rations, the frequencies are increases. The presented results of this model are verified with experimental and numerical results, which found as an excellent agreement.

Natural frequency analysis of joined conical-cylindrical-conical shells made of graphene platelet reinforced composite resting on Winkler elastic foundation

  • Xiangling Wang;Xiaofeng Guo;Masoud Babaei;Rasoul Fili;Hossein Farahani
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.367-384
    • /
    • 2023
  • Natural frequency behavior of graphene platelets reinforced composite (GPL-RC) joined truncated conical-cylindrical- conical shells resting on Winkler-type elastic foundation is presented in this paper for the first time. The rule of mixture and the modified Halpin-Tsai approach are applied to achieve the mechanical properties of the structure. Four different graphene platelets patterns are considered along the thickness of the structure such as GPLA, GPLO, GPLX, GPLUD. Finite element procedure according to Rayleigh-Ritz formulation has been used to solve 2D-axisymmetric elasticity equations. Application of 2D axisymmetric elasticity theory allows thickness stretching unlike simple shell theories, and this gives more accurate results, especially for thick shells. An efficient parametric investigation is also presented to show the effects of various geometric variables, three different boundary conditions, stiffness of elastic foundation, dispersion pattern and weight fraction of GPLs nanofillers on the natural frequencies of the joined shell. Results show that GPLO and BC3 provide the most rigidity that cause the most natural frequencies among different BCs and GPL patterns. Also, by increasing the weigh fraction of nanofillers, the natural frequencies will increase up to 200%.

Free vibration analysis of nonlocal viscoelastic nanobeam with holes and elastic foundations by Navier analytical method

  • Ola A. Siam;Rabab A. Shanab;Mohamed A. Eltaher;Norhan A. Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.257-279
    • /
    • 2023
  • This manuscript is dedicated to deriving the closed form solutions of free vibration of viscoelastic nanobeam embedded in an elastic medium using nonlocal differential Eringen elasticity theory that not considered before. The kinematic displacements of Euler-Bernoulli and Timoshenko theories are developed to consider the thin nanobeam structure (i.e., zero shear strain/stress) and moderated thick nanobeam (with constant shear strain/stress). To consider the internal damping viscoelastic effect of the structure, Kelvin/Voigt constitutive relation is proposed. The perforation geometry is intended by uniform symmetric squared holes arranged array with equal space. The partial differential equations of motion and boundary conditions of viscoelastic perforated nonlocal nanobeam with elastic foundation are derived by Hamilton principle. Closed form solutions of damped and natural frequencies are evaluated explicitly and verified with prestigious studies. Parametric studies are performed to signify the impact of elastic foundation parameters, viscoelastic coefficients, nanoscale, supporting boundary conditions, and perforation geometry on the dynamic behavior. The closed form solutions can be implemented in the analysis of viscoelastic NEMS/MEMS with perforations and embedded in elastic medium.

Analysis of the thermal instability of laminated composite plates

  • H. Mataich;A. El Amrani;B. El Amrani
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.95-113
    • /
    • 2024
  • In this paper, we will analyse the thermo-elastic behavior of the plate element of a structure arranged in a climatically aggressive environment (extreme temperature), we use a refined four-variable thick plate theory to take the shear effect into consideration, the proposed theory less computationally expensive and more accurate so that it incorporates the shear effect into the formulation. The plate is assumed to be simply supported on its four edges, so exact (closed-form) solutions are found according to the Navier expansion, and the governing stability equations and associated boundary conditions of the problem are obtained via the virtual works principle. The plate studied ismade of laminated composite materials, so a parametric study is needed to see the effect of different types of parameters and coupling on the critical temperature value causing thermo-elastic instability of the plate and also on the natural frequency of free vibration, as well as for other parameters such as anisotropy, slenderness and aspect ratio of the plate and finally the lamination angle. Numerical results are obtained for specially orthotropic and antisymmetrical plates and are compared with those obtained by othertheoriesin the literature to validate the analysis approach used.