• 제목/요약/키워드: parametric equations

Search Result 557, Processing Time 0.032 seconds

Development and testing of cored moment resisting stub column dampers

  • Hsiao, Po-Chien;Lin, Kun-Sian;Liao, Wei-Chieh;Zhu, Limeng;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.107-122
    • /
    • 2020
  • Moment resisting stub columns (MRSCs) have increasingly adopted in special moment-resisting frame (SMF) systems in steel building structures, especially in Asian countries. The MRSCs typically provide a lower deformation capacity compared to shear-panel stub columns, a limited post-yield stiffness, and severe strength degradation as adopting slender webs. A new MRSC design with cored configuration, consisting of a core-segment and two side-segments using different steel grades, has been proposed in the study to improve the demerits mentioned above. Several full-scale components of the cored MRSC were experimentally investigated focusing on the hysteretic performance of plastic hinges at the ends. The effects of the depths of the core-segment and the adopted reduced column section details on the hysteretic behavior of the components were examined. The measured hysteretic responses verified that the cored MRSC enabled to provide early yielding, great ductility and energy dissipation, enhanced post-yield stiffness and limited strength degradation due to local buckling of flanges. A parametric study upon the dimensions of the cored MRSC was then conducted using numerical discrete model validated by the measured responses. Finally, a set of model equations were established based on the results of the parametric analysis to accurately estimate strength backbone curves of the cored MRSCs under increasing-amplitude cyclic loadings.

A Parametric Study on EOM-based 2D Numerical Wave Generation using OpenFOAM (OpenFOAM을 이용한 EOM 기반 2차원 수치 파 생성에 관한 파라메트릭 연구)

  • Moon, Seong-Ho;Lee, Sungwook;Paik, Kwang-Jun;Kwon, Chang-Seop
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.490-496
    • /
    • 2018
  • The consistency of the initially designed waves in the domain is essential for accurate calculation of the added resistance in waves through CFD. In particular, unwanted reflected waves at domain boundaries can cause incorrect numerical solutions due to the superposition with initially designed waves. Euler Overlay Method(EOM) is one of the methods for reducing wave reflections by adding an additional source term to momentum and phase conservation equations, respectively. In this study, we apply the Euler Overlay Method(EOM) to the open-source CFD library, OpenFOAM(R), to simulate the accurate free-surface waves in the domain and the parametric study is performed for efficient implementation of Euler Overlay Method(EOM). Considering that the damping efficiency depends on the selection of the overlay parameter in the added source terms, the size of overlay zone and the wave steepness, the influences of these factors are tested through the wave elevation measured at constant time intervals in the 2D numerical wave tank. Through this process, guidelines for selection of optimal overlay parameter and overlay zone size that can be applied according to the scaling law are finally presented.

The Effect of Out-of-Plane Load on the In-Plane Shear Capacity of Reinforcement Concrete Shear Wall (철근 콘크리트 전단벽에서 면외 하중이 면내 전단성능에 미치는 영향)

  • Shin, Hye Min;Park, Jun Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.77-83
    • /
    • 2024
  • The design shear strength equations of RC shear walls have been developed based on their performance under in-plane (IP) loads, thereby failing to account for the potential performance degradation of shear strength when subjected to simultaneous out-of-plane (OOP) loading. Most of the previous experimental studies on RC walls have been conducted in one direction under quasi-static conditions, and due to the difficulty in experimental planning, there is a lack of research on cyclic loading and results under multi-axial loading conditions. During an earthquake, shear walls may yield earlier than their design strength or fail unexpectedly when subjected to multi-directional forces, deviating from their intended failure mode. In this paper, nonlinear analysis in finite element models was performed based on the results of cyclic loading experiments on reinforced concrete shear walls of auxiliary buildings. To investigate the reduction trend in IP shear capacity concerning the OOP load ratio, parametric analysis was conducted using the shear wall FEM. The analysis results showed that as the magnitude of the OOP load increased, the IP strength decreased, with a more significant effect observed as the size of the opening increased. Thus, the necessity to incorporate this strength reduction as a factor for the OOP load effect in the wall design strength equation should be discussed by performing various parametric studies.

A semi-analytical study for vibration analysis of damaged core laminated cylindrical shell with functionally graded CNTs reinforced face sheets resting on a two-parameter elastic foundation

  • Aseel J. Mohammed;Bassam A. Mohammed;Hatam K. Kadhom;Anmar Ghanim Taki;Vahid Tahouneh
    • Advances in nano research
    • /
    • v.17 no.4
    • /
    • pp.301-313
    • /
    • 2024
  • The main objective of this paper is to study vibration of sandwich cylindrical shell with damaged core and FG face sheets resting on a two-parameter elastic foundation based on three-dimensional theory of elasticity. Three complicated equations of motion for the structure under consideration are semi-analytically solved by using generalized differential quadrature method. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features. A detailed parametric study is carried out in order to reveal the effects of different profiles of two-parameter elastic foundation modulus, different geometrical parameters such as the mid radius-to-thickness ratio, length-to-mean radius ratio and the thickness of face sheets on the vibrational characteristics of the damaged functionally graded sandwich cylindrical shell.

A Prediction Method for Ground Surface Settlement During Shield Tunneling in Cohesive Soils (점성토 지반에서의 실드 터널 시공에 따른 지표침하 예측 기법)

  • Yoo, Chung-Sik;Lee, Ho
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.107-122
    • /
    • 1997
  • This paper presents a ground surface settlement prediction method for shield tunneling in cohesive soils. In order to develop the method, a parametric study on shield tunneling was performed by using a threetimensional elasto-plastic finite element analysis, which can simulate the construction procedure. By using the results of the finite element analysis, the ground movement mechanism was investigated and a base which relates the ground surface settlement and iuluencing factors was formed. The data base was then used to formulate semi -empirical equations for both surface settlement ratio above tunnel face and imflection point by means of a regression analysis. Furthermore, a prediction method for transverse and longitudinal surface settlement profiles was suggested by using the leveloped equations in conjunction with the normal probability curve. Effectiveness of the developed method was illustrated by comparing settlement profiles obtained by using the developed method with the results of finite element analysis and measured data. Based on the comparison, it was concluded that the developed method can be effectively rosed for practical applications at least within the conditions investigated.

  • PDF

Ultimate Strength of Anchorage Zone according to Geometric Parameters of Post-Tensioning Anchorage using a Finite Element Method (유한요소해석을 통한 포스트텐션 정착구 형상 변수의 정착부 극한강도 영향 분석)

  • Kwon, Yangsu;Kim, Jin-Kook;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.317-324
    • /
    • 2015
  • The design of anchorage zone in a post-tensioned member has been started from the evaluation of the ultimate resisting capacity as well as the maximum bursting stress developed, and a lot of design codes including AASHTO and PTI describe their design equations to determine the bearing strength of concrete at the anchorage zone. However, these equations usually give conservative results because their derivation is based on the simple anchorage with a wide bearing plate in the surface without any additional consideration for the load transfer mechanism through transverse ribs on the anchorage. To assess the influence of geometric parameters related to the transverse ribs on the resisting capacity of anchorage block, experiments and analysis are conducted. After verifying the validity of numerical model conducted through correlation studies between experimental and analytical results, parametric studies with changes in the transverse ribs are followed and design recommendations for the anchorage block are suggested from the numerical results obtained.

Effects of Flexural Rigidity of Center Tower in Four-Span Suspension Bridges (4경간 현수교에서의 중앙주탑 휨강성의 영향)

  • Gwon, Sun-Gil;Yoo, Hoon;Choi, Dong-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.49-60
    • /
    • 2014
  • For simple and accurate analysis for behaviors of multi-span suspension bridges which are expected to be frequently constructed as strait-crossing bridges, the deflection theory as the peculiar theory of a suspension bridge can be applied. This paper performs a structural analysis for four-span suspension bridges using the deflection theory. Simply-supported beams with tension are used for girders and the deflections of the beams due to the vertical loads and moments at supports are calculated. The calculation is performed iteratively until the deflections satisfy the compatibility equations of cables. The results of the deflection theory analysis considering tower rigidity are compared with those of the finite element analysis for verification. Importance of the tower rigidity for four-span suspension bridges is confirmed using various compatibility equations of the cable due to variation of the constraint conditions between main cable and top of towers. In addition, the simple parametric analysis for variation of the center tower rigidity is performed.

Positive Position Feedback Control of Plate Vibrations Using Moment Pair Actuators (모멘트쌍 액추에이터가 적용된 PPF에 의한 평판의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;You, Ho-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.383-392
    • /
    • 2012
  • This paper reports the active vibration control of plates using a positive position feedback(PPF) controller with moment pair actuators. The equations of motion of the plates under a force and moment pairs are derived and the equations of PPF controllers are formulated. The numerical active control system is then achieved. The effect of the parameters - gain and damping ratio - of the PPF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the PPF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies without changing the phase behavior. The increase of the damping ratio of the PPF controller leads to decrease the magnitude of the open loop transfer function and to modify its phase characteristics, ie, system stability. Based on the behavior of the gain and the damping ratio of the controller, PPF controller for reduction of the plate vibration can be achieved. Two PPF controllers are designed with their connection in parallel to control the two modes simultaneously. Each PPF controller is tuned at the $1^{st}$ and $2^{nd}$ modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the tuned modes can be obtained.

The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams

  • Yahiaoui, Mohammed;Tounsi, Abdelouahed;Fahsi, Bouazza;Bouiadjra, Rabbab Bachir;Benyoucef, Samir
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • This paper presents an analysis of the bending, buckling and free vibration of functionally graded sandwich beams resting on elastic foundation by using a refined quasi-3D theory in which both shear deformation and thickness stretching effects are included. The displacement field contains only three unknowns, which is less than the number of parameters of many other shear deformation theories. In order to homogenize the micromechanical properties of the FGM sandwich beam, the material properties are derived on the basis of several micromechanical models such as Tamura, Voigt, Reuss and many others. The principle of virtual works is used to obtain the equilibrium equations. The elastic foundation is modeled using the Pasternak mathematical model. The governing equations are obtained through the Hamilton's principle and then are solved via Navier solution for the simply supported beam. The accuracy of the proposed theory can be noticed by comparing it with other 3D solution available in the literature. A detailed parametric study is presented to show the influence of the micromechanical models on the general behavior of FG sandwich beams on elastic foundation.

Proposal of new ground-motion prediction equations for elastic input energy spectra

  • Cheng, Yin;Lucchini, Andrea;Mollaioli, Fabrizio
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.485-510
    • /
    • 2014
  • In performance-based seismic design procedures Peak Ground Acceleration (PGA) and pseudo-Spectral acceleration ($S_a$) are commonly used to predict the response of structures to earthquake. Recently, research has been carried out to evaluate the predictive capability of these standard Intensity Measures (IMs) with respect to different types of structures and Engineering Demand Parameter (EDP) commonly used to measure damage. Efforts have been also spent to propose alternative IMs that are able to improve the results of the response predictions. However, most of these IMs are not usually employed in probabilistic seismic demand analyses because of the lack of reliable Ground Motion Prediction Equations (GMPEs). In order to define seismic hazard and thus to calculate demand hazard curves it is essential, in fact, to establish a GMPE for the earthquake intensity. In the light of this need, new GMPEs are proposed here for the elastic input energy spectra, energy-based intensity measures that have been shown to be good predictors of both structural and non-structural damage for many types of structures. The proposed GMPEs are developed using mixed-effects models by empirical regressions on a large number of strong-motions selected from the NGA database. Parametric analyses are carried out to show the effect of some properties variation, such as fault mechanism, type of soil, earthquake magnitude and distance, on the considered IMs. Results of comparisons between the proposed GMPEs and other from the literature are finally shown.