• 제목/요약/키워드: parametric detection

검색결과 126건 처리시간 0.03초

침입자 탐지용 인공 유동감지모의 응답 모델링 (Responses of Artificial Flow-Sensitive Hair for Raider Detection via Bio-Inspiration)

  • 박병규;이준식
    • 대한기계학회논문집B
    • /
    • 제34권4호
    • /
    • pp.355-364
    • /
    • 2010
  • 주위 매질의 움직임에 반응하는 섬유상 감지모는 대부분의 생물체에 존재하여 침입자를 감지하는 역할을 한다. 이 기능을 모방한 인공 감지모의 가능한 작동영역 및 응답특성을 파악하기 위하여 인공유동센서의 수학 모델에 대한 매개변수 해석을 수행하고, 각 변수들의 영향을 고찰하였다. 진동성분을 갖는 복합 공기 유동장에서 감지모의 길이 및 직경이 기계적인 감도와 주파수 응답을 결정하는 주요 인자인 것으로 나타났다. 감지모의 길이에 따라 각속도, 각속도, 각가속도를 감지할 수 있는 주파수 영역이 달라질 수 있는 것으로 나타났다. 또한 항력 및 가상 질량에 의한 토크가 매우 작지만 감지모의 움직임에 매우 큰 영향을 나타냈다. 감지모의 길이 및 직경이 증가함에 따라 공진 주파수는 감소하는 것으로 나타났다.

혈관 내 초음파 영상에서 내강 경계면 자동 분할 (Automatic Identification of the Lumen Border in Intravascular Ultrasound Images)

  • 박준호;고병철;박희준;남재열
    • 정보처리학회논문지B
    • /
    • 제19B권3호
    • /
    • pp.201-208
    • /
    • 2012
  • 혈관 내 초음파 영상(IVUS: Intravascular ultrasoundimages)에서 내강(Lumen) 경계 영역을 검출하는 것은 환자의 심혈관 상태를 파악하는데 중요한 정보를 제공하며, 이를 통해 심혈관계 질환을 예측하고 진단할 수 있다. 따라서 정확하게 내강 경계를 분할하는 것은 매우 중요한 단계이다. 본 논문에서는 비모수적 확률 밀도 함수와 스무딩 함수를 사용하여 자동으로 내강 영역을 분할하는 기법을 제안한다. 각각의 혈관내 초음파 영상들을 극좌표 이미지로 변환 후 웨이블릿 변환을 적용하여 초기 관심 점들을 검출한다. 초기 관심점들 중에서 잡음과 칼슘에 의해 발생된 튀는 점들을 제거하기 위해 비모수적 밀도 함수와 스무딩 함수를 이용하여 튀는 점들을 제거하고 경계면에 해당하는 중요 관심 점만을 남긴다. 마지막으로, 다항곡선 접합(Polynomial curve fitting) 함수를 정의하고 다항식과 실제 내강 경계선에 접합된 관심 점을 이용하여 자연스러운 내강 경계면을 추정한다. 본 논문에서 제안한 방법을 다양한 초음파 영상에 대해 실험한 결과, 기존에 제안된 방법 보다 정확하게 경계면을 검출함을 알 수 있었다.

Rainfall Trend Detection Using Non Parametric Test in the Yom River Basin, Thailand

  • Mama, Ruetaitip;Bidorn, Butsawan;Namsai, Matharit;Jung, Kwansue
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.424-424
    • /
    • 2017
  • Several studies of the world have analyzed the regional rainfall trends in large data sets. However, it reported that the long-term behavior of rainfall was different on spatial and temporal scales. The objective of this study is to determine the local trends of rainfall indices in the Yom River Basin, Thailand. The rainfall indices consist of the annual total precipitation (PRCTPOP), number of heavy rainfall days ($R_{10}$), number of very heavy rainfall days ($R_{20}$), consecutive of dry days (CDD), consecutive of wet days (CWD), daily maximum rainfall ($R_{x1}$), five-days maximum rainfall ($R_{x5}$), and total of annual rainy day ($R_{annual}$). The rainfall data from twelve hydrological stations during the period 1965-2015 were used to analysis rainfall trend. The Mann-Kendall test, which is non-parametric test was adopted to detect trend at 95 percent confident level. The results of these data were found that there is only one station an increasing significantly trend in PRCTPOP index. CWD, which the index is expresses longest annual wet days, was exhibited significant negative trend in three locations. Meanwhile, the significant positive trend of CDD that represents longest annual dry spell was exhibited four locations. Three out of thirteen stations had significant decreasing trend in $R_{annual}$ index. In contrast, there is a station statistically significant increasing trend. The analysis of $R_{x1}$ was showed a station significant decreasing trend at located in the middle of basin, while the $R_{x5}$ of the most locations an insignificant decreasing trend. The heavy rainfall index indicated significant decreasing trend in two rainfall stations, whereas was not notice the increase or decrease trends in very heavy rainfall index. The results of this study suggest that the trend signal in the Yom River Basin in the half twentieth century showed the decreasing tendency in both of intensity and frequency of rainfall.

  • PDF

딥러닝을 활용한 철도 터널 객체 분할에 학습 데이터가 미치는 영향 (Effect of Learning Data on the Semantic Segmentation of Railroad Tunnel Using Deep Learning)

  • 유영무;김병규;박정준
    • 한국지반공학회논문집
    • /
    • 제37권11호
    • /
    • pp.107-118
    • /
    • 2021
  • Scan-to-BIM은 라이다(Light Detection And Ranging, LiDAR)로 구조물을 계측하고 이를 바탕으로 3D BIM(Building Information Modeling) 모델을 구축하는 방법으로 정밀한 모델링이 가능하지만 많은 인력과 시간, 비용이 소모된다는 한계를 가진다. 이러한 한계를 극복하기 위해 포인트 클라우드 데이터를 대상으로 딥러닝(Deep learning) 알고리즘을 적용하여 구조물의 객체 분할(Semantic segmentation)을 수행하는 연구들이 진행되고 있으나 학습 데이터에 따라 객체 분할 정확도가 어떻게 변화하는지에 대한 연구는 미흡한 실정이다. 본 연구에서는 딥러닝을 통한 철도 터널의 객체 분할에 학습 데이터를 구성하는 철도 터널의 크기, 선로 유형 등이 어떤 영향을 미치는지 확인하기 위해 매개변수 연구를 수행하였다. 매개변수 연구 결과, 학습과 테스트에 사용한 터널의 크기가 비슷할수록, 단선 터널보다는 복선 터널로 학습하는 경우에 더 높은 객체 분할 성능을 보였다. 또한, 학습 데이터를 두 가지 이상의 터널로 구성하면 전체 정확도(Overall Accuracy, OA)와 MIoU(Mean Intersection over Union)가 적게는 10%에서 많게는 50%가량 증가하였는데 이로부터 학습 데이터를 다양하게 구성하는 것이 효율적인 학습에 기여할 수 있음을 확인하였다.

Damage detection in truss structures using a flexibility based approach with noise influence consideration

  • Miguel, Leandro Fleck Fadel;Miguel, Leticia Fleck Fadel;Riera, Jorge Daniel;Menezes, Ruy Carlos Ramos De
    • Structural Engineering and Mechanics
    • /
    • 제27권5호
    • /
    • pp.625-638
    • /
    • 2007
  • The damage detection process may appear difficult to be implemented for truss structures because not all degrees of freedom in the numerical model can be experimentally measured. In this context, the damage locating vector (DLV) method, introduced by Bernal (2002), is a useful approach because it is effective when operating with an arbitrary number of sensors, a truncated modal basis and multiple damage scenarios, while keeping the calculation in a low level. In addition, the present paper also evaluates the noise influence on the accuracy of the DLV method. In order to verify the DLV behavior under different damages intensities and, mainly, in presence of measurement noise, a parametric study had been carried out. Different excitations as well as damage scenarios are numerically tested in a continuous Warren truss structure subjected to five noise levels with a set of limited measurement sensors. Besides this, it is proposed another way to determine the damage locating vectors in the DLV procedure. The idea is to contribute with an alternative option to solve the problem with a more widespread algebraic method. The original formulation via singular value decomposition (SVD) is replaced by a common solution of an eigenvector-eigenvalue problem. The final results show that the DLV method, enhanced with the alternative solution proposed in this paper, was able to correctly locate the damaged bars, using an output-only system identification procedure, even considering small intensities of damage and moderate noise levels.

통계분포에 기반한 고해상도 SAR 영상의 변화탐지 알고리즘 구현 및 적용 (Change detection algorithm based on amplitude statistical distribution for high resolution SAR image)

  • 이기웅;강서리;김아름;송경민;이우경
    • 대한원격탐사학회지
    • /
    • 제31권3호
    • /
    • pp.227-244
    • /
    • 2015
  • 최근 위성 Synthetic Aperture Radar (SAR) 영상의 해상도가 개선됨에 따라 이에 대한 수요가 증가할 것으로 보이며 향후 새로운 응용시장으로 성장할 것으로 예측되고 있다. 특히, 화산이나 지진과 같은 자연 재해에 대한 예측이나 지형의 미세한 변화를 탐지하기 위한 용도로 SAR 영상의 활용도가 증가하고 있다. 기존의 변화탐지 알고리즘을 고해상도 SAR 영상에 적용할 경우, 영상간의 기하학적 구조, 스펙클의 영향 등으로 변화탐지 정확도가 저하될 수 있다. 또한, SAR 영상의 경우 지형적 특성에 따라 영상의 통계적 분포가 다르므로 영상의 통계분포를 반영한 임계값 추정이 필요하다. 본 연구에서는 고해상도 SAR 영상의 통계적 분포특성을 반영하여 임계값을 이용하는 변화탐지 알고리즘을 제안한다. 제안된 알고리즘의 성능을 시험하기 위해 SAR 영상 시뮬레이션을 수행하여 성능을 시험하고 검증하였다. 마지막으로 Cosmo-Skymed과 다목적실용위성-5 영상에 각각 적용하여 검증하고 비교한 결과를 제시한다.

Numerical study of anomaly detection under rail track using a time-variant moving train load

  • Chong, Song-Hun;Cho, Gye-Chun;Hong, Eun-Soo;Lee, Seong-Won
    • Geomechanics and Engineering
    • /
    • 제13권1호
    • /
    • pp.161-171
    • /
    • 2017
  • The underlying ground state of a railway plays a significant role in maintaining the integrity of the overlying concrete slab and ultimately supporting the train load. While effective nondestructive tests have been used to evaluate the rail track system, they can only be performed during non-operating time due to the stress wave generated by active sources. In this study, finite element numerical simulations are conducted to investigate the feasibility of detecting unfavorable substructure conditions by using a moving train load. First, a train load module is developed by converting the train load into time-variant equivalent forces. The moving forces based on the shape functions are applied at the nodes. A parametric study that takes into account the bonding state and the train class is then performed. All the synthetic signals obtained from numerical simulations are analyzed at the frequency domain using a Fast Fourier transform (FFT) and at the time-frequency domain using a Short-Time Fourier transform (STFT). The presence of a void condition amplifies the acceleration amplitude and the vibration response. This study confirms the feasibility of using a moving train load to systematically evaluate a rail track system.

Process modeling using artificial neural network in the presence of outliers

  • 고영철;박화규;봉복준;손주찬;왕지남
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1997년도 추계학술대회발표논문집; 홍익대학교, 서울; 1 Nov. 1997
    • /
    • pp.177-180
    • /
    • 1997
  • Outliers, unexpected extraordinary observations that look discordant from most observation in a data set are commonplace in various kinds of data analysis. Since the effect of outliers on model identification could be serious, the aim of this paper is to present some ways of handling outliers in given data set and to specify a model in the presence of outliers. A procedure based on neural network which identifies outliers, removes their effects, and specifies a model for the underlying process is proposed. In contrast with traditional parametric methods requiring to estimate the model's structure and parameters before detecting outliers, the proposed procedure is a nonparametric method without the estimation of model's structure and parameters before handling outliers and could be applied for real problems in the presence of outliers. The proposed methodology is performed as followings. Firstly, outliers are detected and the detected outliers replace the prediction values using outliers detection neural network. The data set removing the effect of outliers is retraining using neural network. Therefore the effects of outliers are removed and the modeling precision can be improved. Experimental results show that the proposed method is suitable for predicting data set in the presence of outliers.

  • PDF

엔드밀 가공시 절삭력을 이용한 공구날 주파수 분석법 (An Analysis on the Tooth Passing Frequency using End-milling Force)

  • 김종도;윤문철;조현덕
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.1-7
    • /
    • 2011
  • The mode analysis of end-milling was introduced using recursive parametric modeling. Also, a numerical mode analysis of FRF in end-milling at different conditions was performed systematically. In this regard, a REIVM(recursive extended instrumental variable method) modeling algorithm was adopted and natural modes of real and imaginary part were discussed. This recursive approach can be used for the on-line system identification and monitoring of an end-milling for this purpose. For acquiring a cutting force, an experimental practice was performed. And these end-milling forces were used for the calculation of FRF(Frequency response function) and its mode analysis. Also, the FRF was analysed for the prediction of end-milling system. As a results, this algorithm was successful in each condition for the detection of natural modes of end-milling. After numerical analysis of the FRF, the tooth passing frequency was discriminated in their FRF, power spectrum and mode calculation.

연속된 CT-Image를 이용한 고관절 3d 형상의 재구성 및 Simulated Implantation System 구축에 관한 연구 (A Study on 3d Reconstruction and Simulated Implantation of Human Femur Using Consecutive CT-Images)

  • 민경준;김중규;최재봉;최귀원
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권2호
    • /
    • pp.155-164
    • /
    • 1999
  • 본 논문에서는 화상 신호처리 및 컴퓨터 그래픽스 요소기술을 이용하여, 컴퓨터 상에서 인공고관절의 시술절차를 적용해 보기 위한 Simulated Implantation System (이하 SIS)을 소개한다 SIS는 일련의 자동화된 절차에 따라, 골반(pelvis)과의 접촉이 이루어지는 대퇴골의 상단부위인 고관절(femoral head)을 대체하는 과정을 3차원적으로 가상 수행할 수 있으며, 환자의 고관절과 인공고관절간의 정합정도를 수치적으로 해석할 수 있는 기능을 궁극적 목표로 하게 된다. 이를 위해 필수적으로 필요한 CT-Image를 이용한 고관절 영상의 3차원 재구성, 그리고 projection image글 이용한 인공고관절의 3차원 표현기법에 대해 논의하고, 각각에 대응되는 결과물들을 분석해봄으로써 현재 의공학 분야에서 절실히 요구되고 있는, 영상신호처리와 컴퓨터그래픽스를 이용한 SIS의 prototype에 대한 모습을 제시해 보고자 한다

  • PDF