• 제목/요약/키워드: parametric continuity conditions

검색결과 9건 처리시간 0.02초

ON THE LOWER SEMICONTINUITY OF THE SOLUTION SETS FOR PARAMETRIC GENERALIZED VECTOR MIXED QUASIVARIATIONAL INEQUALITY PROBLEMS

  • HUNG, NGUYEN VAN
    • 대한수학회보
    • /
    • 제52권6호
    • /
    • pp.1777-1795
    • /
    • 2015
  • In this paper, we establish sufficient conditions for the solution set of parametric generalized vector mixed quasivariational inequality problem to have the semicontinuities such as the inner-openness, lower semicontinuity and Hausdorff lower semicontinuity. Moreover, a key assumption is introduced by virtue of a parametric gap function by using a nonlinear scalarization function. Then, by using the key assumption, we establish condition ($H_h$(${\gamma}_0$, ${\lambda}_0$, ${\mu}_0$)) is a sufficient and necessary condition for the Hausdorff lower semicontinuity, continuity and Hausdorff continuity of the solution set for this problem in Hausdorff topological vector spaces with the objective space being infinite dimensional. The results presented in this paper are different and extend from some main results in the literature.

다중 패치 쉘 아이소 지오메트릭 해석의 계면 연속성 검토 (Studies of Interface Continuity in Isogeometric Structural Analysis for Multi-patch Shell Components)

  • 하윤도;노정민
    • 한국전산구조공학회논문집
    • /
    • 제31권2호
    • /
    • pp.71-78
    • /
    • 2018
  • 본 연구에서는 NURBS 기반 아이소 지오메트릭 쉘 해석을 위해 다중 패치 해석 모델을 정식화하였다. 기존 연구를 통해 개발된 단일 패치로 구성된 전단 변형을 고려한 쉘 요소에 대해 일반 좌표계에서 기하학적으로 엄밀한 쉘 구조물의 아이소 지오메트릭 해석 모델을 도입하고 매개변수 연속성을 고려하여 다중 패치 모델로 확장하였다. 인접 곡면의 노트 요소가 결합 경계를 통해 조화를 이루는 경우에 대해 0차와 1차 매개변수 연속성 조건을 고려하였으며, 두 패치 간 마스터-슬레이브 관계를 정립하여 종속된 한 곡면의 자유도를 상대 곡면의 자유도로 표시하여 모델 크기를 줄이면서 두 곡면을 결합하였다. 다중 패치 쉘 예제에 대해 0차와 1차 연속성 조건을 각각 적용하여 구조해석을 수행하여 1차 연속성 조건의 주요한 특성들을 확인하였다. 또한 각 연속성 조건에 대한 해의 수렴 특성을 검토하였으며 결합 경계에서의 두 패치의 연속성을 확인하였다.

SENSITIVITY ANALYSIS FOR SYSTEM OF PARAMETRIC GENERALIZED QUASI-VARIATIONAL INCLUSIONS INVOLVING R-ACCRETIVE MAPPINGS

  • Kazmi, Kaleem Raza;Khan, Faizan Ahmad;Ahmad, Naeem
    • 대한수학회지
    • /
    • 제46권6호
    • /
    • pp.1319-1338
    • /
    • 2009
  • In this paper, using proximal-point mappings technique of Raccretive mappings and the property of the fixed point set of set-valued contractive mappings, we study the behavior and sensitivity analysis of the solution set of the system of parametric generalized quasi-variational inclusions involving R-accretive mappings in real uniformly smooth Banach space. Further under suitable conditions, we discuss the Lipschitz continuity of the solution set with respect to parameters. The technique and results presented in this paper can be viewed as extension of the techniques and corresponding results given in [3, 23, 24, 32, 33, 34].

PARAMETRIC GENERALIZED MULTI-VALUED NONLINEAR QUASI-VARIATIONAL INCLUSION PROBLEM

  • Khan, F.A.;Alanazi, A.M.;Ali, Javid;Alanazi, Dalal J.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권5호
    • /
    • pp.917-933
    • /
    • 2021
  • In this paper, we investigate the behavior and sensitivity analysis of a solution set for a parametric generalized multi-valued nonlinear quasi-variational inclusion problem in a real Hilbert space. For this study, we utilize the technique of resolvent operator and the property of a fixed-point set of a multi-valued contractive mapping. We also examine Lipschitz continuity of the solution set with respect to the parameter under some appropriate conditions.

[ $C^1$ ] Continuous Piecewise Rational Re-parameterization

  • Liang, Xiuxia;Zhang, Caiming;Zhong, Li;Liu, Yi
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.59-64
    • /
    • 2006
  • A new method to obtain explicit re-parameterization that preserves the curve degree and parametric domain is presented in this paper. The re-parameterization brings a curve very close to the arc length parameterization under $L_2$ norm but with less segmentation. The re-parameterization functions we used are $C^1$ continuous piecewise rational linear functions, which provide more flexibility and can be easily identified by solving a quadratic equation. Based on the outstanding performance of Mobius transformation on modifying pieces with monotonic parametric speed, we first create a partition of the original curve, in which the parametric speed of each segment is of monotonic variation. The values of new parameters corresponding to the subdivision points are specified a priori as the ratio of its cumulative arc length and its total arc length. $C^1$ continuity conditions are imposed to each segment, thus, with respect to the new parameters, the objective function is linear and admits a closed-form optimization. Illustrative examples are also given to assess the performance of our new method.

The unsymmetric finite element formulation and variational incorrectness

  • Prathap, G.;Manju, S.;Senthilkumar, V.
    • Structural Engineering and Mechanics
    • /
    • 제26권1호
    • /
    • pp.31-42
    • /
    • 2007
  • The unsymmetric finite element formulation has been proposed recently to improve predictions from distorted finite elements. Studies have also shown that this special formulation using parametric functions for the test functions and metric functions for the trial functions works surprisingly well because the former satisfy the continuity conditions while the latter ensure that the stress representation during finite element computation can retrieve in a best-fit manner, the actual variation of stress in the metric space. However, a question that remained was whether the unsymmetric formulation was variationally correct. Here we determine that it is not, using the simplest possible element to amplify the principles.

Mesh distortion, locking and the use of metric trial functions for displacement type finite elements

  • Kumar, Surendra;Prathap, G.
    • Structural Engineering and Mechanics
    • /
    • 제29권3호
    • /
    • pp.289-300
    • /
    • 2008
  • The use of metric trial functions to represent the real stress field in what is called the unsymmetric finite element formulation is an effective way to improve predictions from distorted finite elements. This approach works surprisingly well because the use of parametric functions for the test functions satisfies the continuity conditions while the use of metric (Cartesian) shape functions for the trial functions attempts to ensure that the stress representation during finite element computation can retrieve in a best-fit manner, the actual variation of stress in the metric space. However, the issue of how to handle situations where there is locking along with mesh distortion has never been addressed. In this paper, we show that the use of a consistent definition of the constrained strain field in the metric space can ensure a lock-free solution even when there is mesh distortion. The three-noded Timoshenko beam element is used to illustrate the principles. Some significant conclusions are drawn regarding the optimal strategy for finite element modelling where distortion effects and field-consistency requirements have to be reconciled simultaneously.

On the elastic stability and free vibration responses of functionally graded porous beams resting on Winkler-Pasternak foundations via finite element computation

  • Zakaria Belabed;Abdelouahed Tounsi;Mohammed A. Al-Osta;Abdeldjebbar Tounsi;Hoang-Le Minh
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.183-204
    • /
    • 2024
  • In current investigation, a novel beam finite element model is formulated to analyze the buckling and free vibration responses of functionally graded porous beams resting on Winkler-Pasternak elastic foundations. The novelty lies in the formulation of a simplified finite element model with only three degrees of freedom per node, integrating both C0 and C1 continuity requirements according to Lagrange and Hermite interpolations, respectively, in isoparametric coordinate while emphasizing the impact of z-coordinate-dependent porosity on vibration and buckling responses. The proposed model has been validated and demonstrating high accuracy when compared to previously published solutions. A detailed parametric examination is performed, highlighting the influence of porosity distribution, foundation parameters, slenderness ratio, and boundary conditions. Unlike existing numerical techniques, the proposed element achieves a high rate of convergence with reduced computational complexity. Additionally, the model's adaptability to various mechanical problems and structural geometries is showcased through the numerical evaluation of elastic foundations, with results in strong agreement with the theoretical formulation. In light of the findings, porosity significantly affects the mechanical integrity of FGP beams on elastic foundations, with the advanced beam element offering a stable, efficient model for future research and this in-depth investigation enriches porous structure simulations in a field with limited current research, necessitating additional exploration and investigation.

Three-Dimensional Limit Equilibrium Stability Analysis of the Irregularly Shaped Excavation Comer with Skew Soil Nailing System

  • Kim, Hong Taek;Par
    • 한국지반공학회지:지반
    • /
    • 제14권3호
    • /
    • pp.73-94
    • /
    • 1998
  • 사면보강 또는 굴착면의 안정성 확보를 위해 쏘일례일링 공법이 종종 적용되고 있다. 그러나 오목형태 또는 볼록형태 모서리부와 같은 특수한 지역에 쏘일네일링 공법이 적용되어질 경우, 편기각보강형태, 즉 skew 쏘일네일 형태로 주로 시공쥐고 있다. 하지만, 지금까지 skew 쏘일례일링 공법이 적용된 굴착 모서리부에 대한 3차원 안정해석 및 거동분석 등에 대한 실험이나 연구결과는 미흡한 실정이며, 따라서 보강재의 배치형태, 삽입각도 및 길이 등 관련 설계변수값 결정에 관하여 주로 경험에 의존하고 있는 실정이다. 따글윽 본 연구의 주된 목적은, skew 쏘일네일링 공법이 오목형태 굴착 모서리부에 적용되는 경우 이에 대한 3차원 한계평형 안정성 평가기법을 제시하는 데 있다. 3차원 예상 파괴흙쐐기의 형상은 FLAC 프로그램 모델링 및 해석을 통해 결정하였으며, 모서리부에 대한 3차원 침투수압 산정식의 제시 및 해석시 다층지반조건의 고려 등이 포함되었다. 또한 제시된 3차원 안정해석법 을 이용해, 관련 설계변수들의 모서리부 안정성에 미치는 영향 정도를 분석하였다. 아울러 기 제시된 볼록형태 굴착 모서리부의 3차원 안정해석 법을 이용해 skew 쏘일네일 보강패턴의 효율성을 분석하였으며, 또한 굴착과정을 통해 전면부 벽체변위 및 인접지반의 침하 등이 상대적으로 문 제시되는 볼록형태 굴착 모서리부에 대한 변위예측을 위해 준 3차원 유한요소 해석기법 및 중첩기법 등의 적용을 시도하였다.

  • PDF