• Title/Summary/Keyword: parametric adaptive control

Search Result 64, Processing Time 0.019 seconds

Buffeting response control of a long span cable-stayed bridge during construction using semi-active tuned liquid column dampers

  • Shum, K.M.;Xu, Y.L.;Guo, W.H.
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.271-296
    • /
    • 2006
  • The frequency of a traditional tuned liquid column damper (TLCD) depends solely on the length of liquid column, which imposes certain restrictions on its application to long span cable-stayed bridges during construction. The configuration of a cable-stayed bridge varies from different construction stages and so do its natural frequencies. It is thus difficult to apply TLCD with a fixed configuration to the bridge during construction or it is not economical to design a series of TLCD with different liquid lengths to suit for various construction stages. Semi-active tuned liquid column damper (SATLCD) with adaptive frequency tuning capacity is studied in this paper for buffeting response control of a long span cable-stayed bridge during construction. The frequency of SATLCD can be adjusted by active control of air pressures inside the air chamber at the two ends of the container. The performance of SATLCD for suppressing combined lateral and torsional vibration of a real long span cable-stayed bridge during construction stage is numerically investigated using a finite element-based approach. The finite element model of SATLCD is also developed and incorporated into the finite element model of the bridge for predicting buffeting response of the coupled SATLCD-bridge system in the time domain. The investigations show that with a fixed container configuration, the SATLCD with adaptive frequency tuning can effectively reduce buffeting response of the bridge during various construction stages.

Responsive Pneumatic Facade with Adaptive Openings for Natural Ventilation (창호의 개폐조절을 기반으로 한 리스펀시브 뉴메틱 파사드)

  • Lee, Jisun;Lee, Hyunsoo
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.33 no.12
    • /
    • pp.29-39
    • /
    • 2017
  • The building skins are important architectural elements in both functional and aesthetical aspects. This study focuses on developing a responsive facade with autonomous opening and closing behaviors in accordance with environmental conditions and user requirements for natural ventilation for the office building. The pneumatic ETFE panels are applied as the skin materials taking advantage of the efficiency of the inflatable skin of lightness, architectural performance and sustainable material properties. The biomimetic design methodology is taken for its innovative and visionary concept for the facade design. The interpretation of the building facade in analogy to natural organisms delivers functional and aesthetic characters. By exploring the structural movements of the plant pores, the facade control is developed to be autonomous by the parameter values. The facade opening and closing configurations are derived through parametric modeling and visualization programming. Through the application of this study, expected results are to improve user comfort and energy efficiency.

Sensitivity analysis of variable curvature friction pendulum isolator under near-fault ground motions

  • Shahbazi, Parisa;Taghikhany, Touraj
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.23-33
    • /
    • 2017
  • Variable Curvature Friction Pendulum (VCFP) bearing is one of the alternatives to control excessive induced responses of isolated structures subjected to near-fault ground motions. The curvature of sliding surface in this isolator is varying with displacement and its function is non-spherical. Selecting the most appropriate function for the sliding surface depends on the design objectives and ground motion characteristics. To date, few polynomial functions have been experimentally tested for VCFP however it needs comprehensive parametric study to find out which one provides the most effective behavior. Herein, seismic performance of the isolated structure mounted on VCFP is investigated with two different polynomial functions of the sliding surface (Order 4 and 6). By variation of the constants in these functions through changing design parameters, 120 cases of isolators are evaluated and the most proper function is explored to minimize floor acceleration and/or isolator displacement under different hazard levels. Beside representing the desire sliding surface with adaptive behavior, it was shown that the polynomial function with order 6 has least possible floor acceleration under seven near-field ground motions in different levels.

An Enhanced Power Sharing Strategy for Islanded Microgrids Considering Impedance Matching for Both Real and Reactive Power

  • Lin, Liaoyuan;Guo, Qian;Bai, Zhihong;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.282-293
    • /
    • 2017
  • There exists a strong coupling between real and reactive power owing to the complex impedances in droop based islanded microgrids (MGs). The existing virtual impedance methods consider improvements of the impedance matching for sharing of the voltage controlled power (VCP) (reactive power for Q-V droop, and real power for P-V droop), which yields a 1-DOF (degree of freedom) tunable virtual impedance. However, a weak impedance matching for sharing of the frequency controlled power (FCP) (real power for $P-{\omega}$ droop, and reactive power for $Q-{\omega}$ droop) may result in FCP overshoots and even oscillations during load transients. This in turn results in VCP oscillations due to the strong coupling. In this paper, a 2-DOF tunable adaptive virtual impedance method considering impedance matching for both real and reactive power (IM-PQ) is proposed to improve the power sharing performance of MGs. The dynamic response is promoted by suppressing the coupled power oscillations and power overshoots while realizing accurate power sharing. In addition, the proposed power sharing controller has a better parametric adaptability. The stability and dynamic performances are analyzed with a small-signal state-space model. Simulation and experimental results are presented to investigate the validity of the proposed scheme.