• Title/Summary/Keyword: parameters of Z-R relationship

Search Result 14, Processing Time 0.023 seconds

Revisiting the Z-R Relationship Using Long-term Radar Reflectivity over the Entire South Korea Region in a Bayesian Perspective

  • Kim, Tae-Jeong;Kim, Jin-Guk;Kim, Ho Jun;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.275-275
    • /
    • 2021
  • A fixed Z-R relationship approach, such as the Marshall-Palmer relationship, for an entire year and for different seasons can be problematic in cases where the relationship varies spatially and temporally throughout a region. From this perspective, this study explores the use of long-term radar reflectivity for South Korea to obtain a nationwide calibrated Z-R relationship and the associated uncertainties within a Bayesian regression framework. This study also investigates seasonal differences in the Z-R relationship and their roles in reducing systematic error. Distinct differences in the Z-R parameters in space are identified, and more importantly, an inverse relationship between the parameters is clearly identified with distinct regimes based on the seasons. A spatially structured pattern in the parameters exists, particularly parameter α for the wet season and parameter β for the dry season. A pronounced region of high values during the wet and dry seasons may be partially associated with storm movements in that season. Finally, the radar rainfall estimates through the calibrated Z-R relationship are compared with the existing Z-R relationships for estimating stratiform rainfall and convective rainfall. Overall, the radar rainfall fields based on the proposed modeling procedure are similar to the observed rainfall fields, whereas the radar rainfall fields obtained from the existing Marshall-Palmer Z-R relationship show a systematic underestimation. The obtained Z-R relationships are validated by testing the predictions on unseen radar-gauge pairs in the year 2018, in the context of cross-validation. The cross-validation results are largely similar to those in the calibration process, suggesting that the derived Z-R relationships fit the radar-gauge pairs reasonably well.

  • PDF

Using Extended Kalman Filter for Real-time Decision of Parameters of Z-R Relationship (확장 칼만 필터를 활용한 Z-R 관계식의 매개변수 실시간 결정)

  • Kim, Jungho;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.119-133
    • /
    • 2014
  • The study adopted extended Kalman filter technique in an effort to predict Z-R relationship parameter as a stable value in real-time. Toward this end, a parameter estimation model was established based on extended Kalman filter in consideration of non-linearity of Z-R relationship. A state-space model was established based on a study that was conducted by Adamowski and Muir (1989). Two parameters of Z-R relationship were set as state variables of the state-space model. As a result, a stable model where a divergence of Kalman gain and state variables are not generated was established. It is noteworthy that overestimated or underestimated parameters based on a conventional method were filtered and removed. As application of inappropriate parameters might cause physically unrealistic rain rate estimation, it can be more effective in terms of quantitative precipitation estimation. As a result of estimation on radar rainfall based on parameters predicted with the extended Kalman filter, the mean field bias correction factor turned out to be around 1.0 indicating that there was a minor difference from the gauge rain rate without the mean field bias correction. In addition, it turned out that it was possible to conduct more accurate estimation on radar rainfall compared to the conventional method.

Quantitative evaluation of radar reflectivity and rainfall intensity relationship parameters uncertainty using Bayesian inference technique (Bayesian 추론기법을 활용한 레이더 반사도-강우강도 관계식 매개변수의 불확실성 정량적 평가)

  • Kim, Tae-Jeong;Park, Moon-Hyeong;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.813-826
    • /
    • 2018
  • Recently, weather radar system has been widely used for effectively monitoring near real-time weather conditions. The radar rainfall estimates are generally relies on the Z-R equation that is an indirect approximation of the empirical relationship. In this regards, the bias in the radar rainfall estimates can be affected by spatial-temporal variations in the radar profile. This study evaluates the uncertainty of the Z-R relationship while considering the rainfall types in the process of estimating the parameters of the Z-R equation in the context of stochastic approach. The radar rainfall estimates based on the Bayesian inference technique appears to be effective in terms of reduction in bias for a given season. The derived Z-R equation using Bayesian model enables us to better represent the hydrological process in the rainfall-runoff model and provide a more reliable forecast.

RELATIONSHIP BETWEEN FABRIC SOUND PARAMETERS AND SUBJECTIVE SENSATION

  • Yi, Eunjou;Cho, Gilsoo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.138-143
    • /
    • 2000
  • In order to investigate the relationship between fabric sound parameters and subjective sensation, each sound from 60 fabrics was recorded and analyzed by Fast Fourier transform. Level pressure of total sound (LPT), three coefficients (ARC, ARF, ARE) of auto regressive models, loudness (Z), and sharpness (Z) by Zwickers model were estimated as sound parameters. For subjective evaluation, seven sensation (softness, loudness, sharpness, clearness, roughness, highness, and pleasantness) was rated by both semantic differential scale (SDS) and free modulus magnitude estimation (FMME). As the results, the ARC values were positively proportional to both LPT and loudness (Z) values. In both of SDS and FMME, softness, clearness, and pleasantness were negatively correlated with loudness, sharpness, roughness, and highness. In regression models, softness and clearness by FMME were negatively affected by LPT뭉 ARC, while loudness, sharpness, roughness, and highness were positively expected. Regression models for pleasantness showed low values for R2.

  • PDF

Bioimpedance Changes in Rats with CCl4-Induced Liver Fibrosis

  • Heo, Jeong;Jung, Dong-Keun
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • To characterize the relationship between the stage of hepatic fibrosis and bioimpedance, several electric parameters were estimated in rats with $CCl_4$-induced liver fibrosis. Thirty three Sprague-Dawley rats were intraperitoneally injected with a $CCl_4$-mineral oil mixture (1:1, 0.2 mL/100 g) twice a week for 8 weeks. The resistance(R), reactance(X), impedance(Z), and dissipation factor(D) between 1 kHz and 100 kHz were then evaluated in the livers of the rats under pentobarbital anesthesia using an HP4294A Impedance Analyzer. The rats were killed 2, 4, 6, and 8 weeks later, and their livers were classified in accordance with Ishak's scoring system. R, X, and Z changed in accordance with the progression of hepatic fibrosis and the changes were greater at lower frequencies than at higher frequencies. In comparison, the D spectrum was biphasic; D increased initially then decreased with increasing frequency. All of the parameters(R, X, Z, and D) changed in accordance with the stage of fibrosis in the livers, but D changed specifically with the progression of fibrosis. These results indicate that hepatic fibrosis may be evaluated by determining the changes in D.

Relationships between solar/interplanetary (IP) parameters and Dst index, according to IP sources

  • Ji, Eun-Young;Moon, Yong-Jae;Lee, Dong-Hun
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.39.1-39.1
    • /
    • 2010
  • We have investigated interplanetary (IP) structures of 82 intense geomagnetic storms (Dst $\leq$ -100 nT) that occurred from 1998 to 2006. According to their interplanetary origins, we classified them as four groups: 20 sMC events (IP shock and MC), 19 SH events (sheath field), 12 SH+MC events (Sheath field and MC), and 8 nonMC events (non-MC type ICME). For each group, we examined the relationships between Dst index and solar/IP parameters, namely, direction parameter (DP), CME speed ($V_{CME}$), solar wind speed ($V_{SW}$), minimum of IMF $B_z$ component($Bz_{min}$), and maximum of $E_y$ component ($Ey_{max}$).We found that the relationships strongly depend on their IP source. Our main results can be summarized as follows: 1) The correlation between Dst and DP is the best for the SH+MC events (r = -0.61). 2) The relationship between Dst and $V_{CME}$ gives the best correlation for the sMC events (r = -0.56). 3) There is the best correlation between Dst and $V_{SW}$ for the sMC events (r = -0.61), while there is a very weak correlation (r=-0.17) for the SH events. 4) The relationship between Dst and $Bz_{min}$ gives the best correlation (r = -0.87) for the SH+MC events. 5) The correlation between Dst and $Ey_{max}$ is the best for the SH+MC events (r = -0.87). Summing up, the sMC and SH+MC events give us good correlations, but the SH events, weak correlations. From this study, we suggest that this tendency should be caused by the characteristics of IMF southward components, e.g., smooth field rotations for the MC events and highly IMF fluctuations for the SH events.

  • PDF

EFFECT OF THE SHAPE OF IMPINGEMENT PLATE ON THE VAPORIZATION AND FORMATION OF FUEL MIXTURE IN IMPINGING SPRAY

  • Kang, J.J.;Kim, D.W.;Choi, G.M.;Kim, D.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.585-593
    • /
    • 2006
  • The effect of the shape of the side wall on vaporization and fuel mixture were investigated for the impinging spray of a direct injection(DI) gasoline engine under a variety of conditions using the LIEF technique. The characteristics of the impinging spray were investigated under various configurations of piston cavities. To simulate the effect of piston cavity configurations and injection timing in an actual DI gasoline engine, the parameters were horizontal distance from the spray axis to side wall and vertical distance from nozzle tip to impingement plate. Prior to investigating the side wall effect, experiments on free and impinging sprays for flat plates were conducted and these results were compared with those of the side wall impinging spray. For each condition, the impingement plate was located at three different vertical distances(Z=46.7, 58.4, and 70 mm) below the injector tip and the rectangular side wall was installed at three different radial distances(R=15, 20, and 25 mm) from the spray axis. Radial propagation velocity from spray axis along impinging plate became higher with increasing ambient temperature. When the ambient pressure was increased, propagation speed reduced. High ambient pressures tended to prevent the impinging spray from the propagating radially and kept the fuel concentration higher near the spray axis. Regardless of ambient pressure and temperature fully developed vortices were generated near the side wall with nearly identical distributions, however there were discrepancies in the early development process. A relationship between the impingement distance(Z) and the distance from the side wall to the spray axis(R) was demonstrated in this study when R=20 and 25 mm and Z=46.7 and 58.4 mm. Fuel recirculation was achieved by adequate side wall distance. Fuel mixture stratification, an adequate piston cavity with a shorter impingement distance from the injector tip to the piston head should be required in the central direct injection system.

Close Relationship in Color Between Host and Satellite Galaxies in WHL 085910.0+294957, a Galaxy Cluster at z = 0.30

  • Lee, Joon Hyeop;Lee, Hye-Ran;Kim, Minjin;Seon, Kwang-Il;Ree, Chang Hee;Kim, Sang Chul;Lee, Jong Chul;Jeong, Hyunjin;Ko, Jongwan;Yang, Soung-Chul;Choi, Changsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.41.1-41.1
    • /
    • 2013
  • To test whether the close relationships between host and satellite galaxies in isolated groups are also found in the harsh environment of a galaxy cluster, we carry out a case study of WHL 085910.0+294957, a galaxy cluster at z=0.30, using deep images obtained with the 2.1-m Otto Struve telescope and CQUEAN CCD camera. When environmental parameters are controlled, the local weighted mean color of faint galaxies shows a measurable correlation with the color of their bright ($M_i$ < -18) neighbor. The most striking result is that the red (r - i > 0.2) and bright galaxies within 200 kpc distance from the center of the cluster are correlated in color with very faint ($M_i$ > -14) galaxies around them by $(r-i)_{satellites}=(7.276{\pm}1.402){\times}(r-i)_{host}-2.434$ (correlation coefficient = 0.665). We suggest three scenarios to interpret the results: vestiges of infallen groups, dwarf capturing, and tidal tearing of bright galaxies.

  • PDF

Assessment of variability and uncertainty in bias correction parameters for radar rainfall estimates based on topographical characteristics (지형학적 특성을 고려한 레이더 강수량 편의보정 매개변수의 변동성 및 불확실성 분석)

  • Kim, Tae-Jeong;Ban, Woo-Sik;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.589-601
    • /
    • 2019
  • Various applications of radar rainfall data have been actively employed in the field of hydro-meteorology. Since radar rainfall is estimated by using predefined reflectivity-rainfall intensity relationships, they may not have sufficient reproducibility of observations. In this study, a generalized linear model is introduced to better capture the Z-R relationship in the context of bias correction within a Bayesian regression framework. The bias-corrected radar rainfall with the generalized linear model is more accurate than the widely used mean field bias correction method. In addition, we analyzed variability of the bias correction parameters under various geomorphological conditions such as the height of the weather station and the separation distance from the radar. The identified relationship is finally used to derive a regionalized formula which can provide bias correction factors over the entire watershed. It can be concluded that the bias correction parameters and regionalized method obtained from this study could be useful in the field of radar hydrology.

Estimation of the Reach-average Velocity of Mountain Streams Using Dye Tracing (염료추적자법을 이용한 산지하천의 구간 평균 유속 추정)

  • Tae-Hyun Kim;Jeman Lee;Chulwon Lee;Sangjun Im
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.374-381
    • /
    • 2023
  • The travel time of flash floods along mountain streams is mainly governed by reach-average velocity, rather than by the point velocity of the locations of interest. Reach-average velocity is influenced by various factors such as stream geometry, streambed materials, and the hydraulic roughness of streams. In this study, the reach-average velocity in mountain streams was measured for storm periods using rhodamine dye tracing. The point cloud data obtained from a LiDAR survey was used to extract the average hydraulic roughness height, such as Ra, Rmax, and Rz. The size distribution of the streambed materials (D50, D84) was also considered in the estimation of the roughness height. The field experiments revealed that the reach-average velocities had a significant relationship with flow discharges (v = 0.5499Q0.6165 ), with an R2 value of 0.77. The root mean square error in the roughness height of the Ra-based estimation (0.45) was lower than those of the other estimations (0.47-1.04). Among the parameters for roughness height estimation, the Ra -based roughness height was the most reliable and suitable for developing the reach-average velocity equation for estimating the travel time of flood waves in mountain streams.