• Title/Summary/Keyword: parameters fitting

Search Result 715, Processing Time 0.024 seconds

Analysis of the Warm Shrink Fitting Process for Assembling the Part(Shaft and Output Gear) (단품(축/OUTPUT 기어)조립을 위한 온간압입공정 해석)

  • Kim, Tae-Jin;Kang, Hee-Jun;Kim, Chul;Chu, Suck-Jae;Kim, Ho-Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.47-54
    • /
    • 2008
  • Fitting process carried out in the automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that heats gear to a suitable range under the tempering temperature and squeezes it toward the outer diameter of shaft. Its stress depends on the yield strength of gear. Press fitting is a method that generally squeezes gear toward that of shaft at room temperature by a press. Another method heats warmly gear and safely squeezes it toward that of shaft. Warm shrink fitting process for the automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by this process produced dimensional changes in both the outer diameter and profile of the gear. So that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of warm shrink fitting process, in which design parameters are involved; contact pressure according to fitting interference between outer diameter of shaft and inner diameter of gear, fitting temperature, and profile tolerance of gear. In this study, an closed form equation to predict contact pressure and fitting load was proposed in order to develop an optimization technique of the warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, that is, thermal-structural coupled field analysis. Actual loads measured in the field was in good agreements with the results obtained by the theoretical and finite element analysis.

The Influence of Fitting Parameters on the Soil-Water Characteristics Curve in Stability Analysis of an Unsaturated Natural Slope (불포화 자연사면의 안정해석시 흙-함수특성곡선 맞춤계수의 영향)

  • Kim, Jae-Hong;Yoo, Yong-Jae;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.165-178
    • /
    • 2021
  • The influence of Soil-Water Characteristic Curve (SWCC) fitting parameters for an unsaturated natural slope was evaluated through seepage and slope stability analysis as a function of rainfall. Soil samples were collected from the study area in Jirisan National Park and the physical and mechanical characteristics of unsaturated soil layers were measured in laboratory tests. The saturation depth was calculated via seepage analysis by changing fitting parameters α, the parameter related to the Air Entry Value (AEV) and n, the parameter related to the slope of the SWCC in the range of natural conditions. Slope stability analysis using the limit equilibrium method considered the calculated depth of saturation. Results from seepage analysis for various rainfall conditions indicate the saturation depth in the soil layer suddenly increased as the fitting parameter α decreased; the saturation time for the entire soil layer also decreased. Slope stability analysis considering the calculated depth of saturation shows that the slope safety factor rapidly decreased as the fitting parameter α decreased, whereas the variation in slope safety factor was very small when n increased. Hence, fitting parameter α has a large effect on saturation depth during rainfall and therefore on slope stability, whereas slope stability is relatively unaffected by the fitting parameter n.

A Copula method for modeling the intensity characteristic of geotechnical strata of roof based on small sample test data

  • Jiazeng Cao;Tao Wang;Mao Sheng;Yingying Huang;Guoqing Zhou
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.601-618
    • /
    • 2024
  • The joint probability distribution of uncertain geomechanical parameters of geotechnical strata is a crucial aspect in constructing the reliability functional function for roof structures. However, due to the limited number of on-site exploration and test data samples, it is challenging to conduct a scientifically reliable analysis of roof geotechnical strata. This study proposes a Copula method based on small sample exploration and test data to construct the intensity characteristics of roof geotechnical strata. Firstly, the theory of multidimensional copula is systematically introduced, especially the construction of four-dimensional Gaussian copula. Secondly, data from measurements of 176 groups of geomechanical parameters of roof geotechnical strata in 31 coal mines in China are collected. The goodness of fit and simulation error of the four-dimensional Gaussian Copula constructed using the Pearson method, Kendall method, and Spearman methods are analyzed. Finally, the fitting effects of positive and negative correlation coefficients under different copula functions are discussed respectively. The results demonstrate that the established multidimensional Gaussian Copula joint distribution model can scientifically represent the uncertainty of geomechanical parameters in roof geotechnical strata. It provides an important theoretical basis for the study of reliability functional functions for roof structures. Different construction methods for multidimensional Gaussian Copula yield varying simulation effects. The Kendall method exhibits the best fit in constructing correlations of geotechnical parameters. For the bivariate Copula fitting ability of uncertain parameters in roof geotechnical strata, when the correlation is strong, Gaussian Copula demonstrates the best fit, and other Copula functions also show remarkable fitting ability in the region of fixed correlation parameters. The research results can offer valuable reference for the stability analysis of roof geotechnical engineering.

Accuracy Improvement of Lattice Parameters Measured from Electron Diffraction Data (전자회절을 이용한 격자상수의 측정 정확도 향상)

  • Lee, Sang-Gil;Song, Kyung;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • v.41 no.1
    • /
    • pp.75-79
    • /
    • 2011
  • For quantitative analysis of nano-crystal structure, we reported the accuracy improvement method of lattice parameters measured from electron diffraction. For calculation of Au lattice parameters used as a standard crystal structure, it was considered two different acquisition methods (detector and enegy-filter) and three different calculation methods (conventional, least-square and regression fit). As a result, the measurement reliability could be enhanced by using CCD camera which gives higher performance, while energy-filtering did not affect the improvement the camera constant accuracy. Also, the accuracy of lattice parameters could be improved up to $10^{-4}$ order by regression fitting with correction formula. Finally, it is expected that the combination of regression fitting and intensity extraction from energy-filtered precession electron diffraction gives a solution of quantitative structure analysis for unknown nano-crystals.

The Theoretical Calculations of Kinetic and Thermodynamics Parameters and Anharmonic Correction for the Related Reactions of NO3

  • Yu, Hongjing;Liu, Yancheng;Xia, Wenwen;Wang, Li;Jiang, Meiyi;Hu, Wenye;Yao, Li
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.6
    • /
    • pp.419-432
    • /
    • 2021
  • According to the transition state (TS) theory, Gaussian software and Yao and Lin (YL) method, the thermodynamics and kinetic data respectively were calculated, and anharmonic effect was considered for related reactions of NO3. The methods of calculating and fitting kinetic and thermodynamics parameters were provided by least square method and related equations in this paper. Notably, the fitted E of Arrhenius equation was close to the calculated barrier of related reaction by QCISD(T) method. Therefore, the kinetic fitting result can well express the physical meaning of E in Arrhenius equation. Besides, the conversion process and the reaction mechanism of NO3 were researched. For NO3, it seemed that its instability results from its easy reaction with other substances rather than the decompose reaction of itself.

Storage Type Nonlinear Hydrological Forecasting Model (저류함수형(貯溜凾數型) 비선형(非線型) 수문예측모형(水文豫測模型))

  • Baek, Un Il;Yoon, Tae Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.29-38
    • /
    • 1982
  • Nonlinear hydrological model containing the nonlinearity of effective rainfall, lag time and runoff is presented. In the evaluation of rainfall excess, the polynomial fitting method for total rainfall, 5 day antecedant rainfall and direct runoff is developed. In the application to actual watershed, the estimated model parameters of nonlinear lag model reflecting the nonlinearity of lag time are compared with the parameters, by both the fitting method and the correlation, model which are the modified version of the storage function model. The Successive Approximation Method in mathematical solution and Newton-Rhapson method in numerical solution are found to be superior to the conventional numerical graphic method in the analysis of nonlinear processes.

  • PDF

Experimental Vibration Analysis for Viscoelastically Damped Circular Cylindrical Shell Using Nonlinear Least Square Method (비선형 최소제곱법을 이용한 점탄성 감쇠를 갖는 원통셀의 실험진동해석)

  • Min, Cheon-Hong;Park, Han-Il;Bae, Soo-Ryong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.41-46
    • /
    • 2008
  • It is a recent trend for advanced ships and submarines to incorporate composite structures with viscoelastically damping material. Much research has been done on curve-fitting techniquesto identify vibration characteristic parameters such as natural frequencies, modal damping ratios, and mode shapes of the composite structure. In this study, an advanced technique for accurately determining vibration characteristic of a circular cylindrical shell-attached viscoelastically damping material is used, based on a multi-degree of freedom (MDOF) curve-fitting method. First, an initial value is obtained by using a linear least square method. Next, using the initial value, the exact modal parameters of the composite circular cylindrical shell are obtained by using a nonlinear least square method. Results show computation time is greatly decreased and accurate results are obtained by the MDOF curve-fitting method.

Robust Estimation of Camera Parameters from Video Signals for Video Composition (영상합성을 위한 영상으로부터의 견실한 카메라피라미터 확정법)

  • 박종일;이충웅
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.10
    • /
    • pp.1305-1313
    • /
    • 1995
  • In this paper, we propose a robust estimation of camera parameters from image sequence for high quality video composition. We first establish correspondence of feature points between consecutive image fields. After the establishment, we formulate a nonlinear least-square data fitting problem. When the image sequence contains moving objects, and/or when the correspondence establishment is not successful for some feature points, we get bad observations, outliers. They should be properly eliminated for a good estimation. Thus, we propose an iterative algorithm for rejecting the outliers and fitting the camera parameters alternatively. We show the validity of the proposed method using computer generated data sets and real image sequeces.

  • PDF

Studies on the Adsorption Modeling of Cationic Heavy Metals(Pb, Cd) by the Surface Complexation Model (Surface Complexation Model을 이용한 양이온 중금속(Pb, Cd) 흡착반응의 모델화 연구)

  • 신용일;박상원
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.211-219
    • /
    • 1999
  • Surface complexation models(SCMs) have been performed to predict metal ion adsorption behavior onto the mineral surface. Application of SCMs, however, requires a self-consistent approach to determine model parameter values. In this paper, in order to determine the metal ion adsorption parameters for the triple layer model(TLM) version of the SCM, we used the zeta potential data for Zeolite and Kaolinite, and the metal ion adsorption data for Pb(II) and Cd(II). Fitting parameters determined for the modeling were as follows ; total site concentration, site density, specific surface area, surface acidity constants, etc. Zeta potential as a new approach other than the acidic-alkalimetric titration method was adopted for simulation of adsorption phenomena. Some fitting parameters were determined by the trial and error method. Modeling approach was successful in quantitatively simulating adsorption behavior under various geochemical conditions.

  • PDF

A Study on the Effects of the Process Parameters for the Tube Hydroforming Process (관재 하이드로포밍시 공정인자 영향도에 관한 연구)

  • Kim K. J.;Kim J. W.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.49-53
    • /
    • 2001
  • Recently hydroforming process became a process which is increasingly applied in the automotive industry. As the hydroforming process is a new technology, there is no abundant data to assist manufacturing the products. To investigate the effects of process parameters on the tube hydroforming process, simple bulging, circular bulging and Tee-fitting tests are performed. The optimal leading path to escape the failure modes(bursting, wrinkling) is determined and the effects of the process parameters, the internal pressure and axial feeding on the product quality, such as thickness distribution, forming height and branch dome shape are investigated.

  • PDF