• Title/Summary/Keyword: parameters estimation

Search Result 4,064, Processing Time 0.03 seconds

Age Estimation with Panoramic Radiomorphometric Parameters Using Generalized Linear Models

  • Lee, Yeon-Hee;An, Jung-Sub
    • Journal of Oral Medicine and Pain
    • /
    • v.46 no.2
    • /
    • pp.21-32
    • /
    • 2021
  • Purpose: The purpose of the present study was to investigate the correlation between age and 34 radiomorphometric parameters on panoramic radiographs, and to provide generalized linear models (GLMs) as a non-invasive, inexpensive, and accurate method to the forensic judgement of living individual's age. Methods: The study included 417 digital panoramic radiographs of Korean individuals (178 males and 239 females, mean age: 32.57±17.81 years). Considering the skeletal differences between the sexes, GLMs were obtained separately according to sex, as well as across the total sample. For statistical analysis and to predict the accuracy of the new GLMs, root mean squared error (RMSE) and adjusted R-squared (R2) were calculated. Results: The adjusted R2-values of the developed GLMs in the total sample, and male and female groups were 0.623, 0.637, and 0.660, respectively (p<0.001), while the allowable RMSE values were 8.80, 8.42, and 8.53 years, respectively. In the GLM of the total sample, the most influential predictor of greater age was decreased pulp area in the #36 first molar (beta=-26.52; p<0.01), followed by the presence of periodontitis (beta=10.24; p<0.01). In males, the most influential factor was the presence of periodontitis (beta=9.20; p<0.05), followed by the number of full veneer crowns (beta=2.19; p<0.001). In females, the most influential predictor was the presence of periodontitis (beta=18.10; p<0.001), followed by the tooth area of the #16 first molar (beta=-11.57; p<0.001). Conclusions: We established acceptable GLM for each sex and found out the predictors necessary to age estimation which can be easily found in panoramic radiographs. Our study provides reference that parameters such as the area of tooth and pulp, the number of teeth treated, and the presence of periodontitis should be considered in estimating age.

An Approach for the Estimation of Mixture Distribution Parameters Using EM Algorithm (복합확률분포의 파라메타 추정을 위한 EM 알고리즘의 적용 연구)

  • Daeyoung Shim;SangGu Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.35-47
    • /
    • 2023
  • Various single probability distributions have been used to represent time headway distributions. However, it has often been difficult to explain the time headway distribution as a single probability distribution on site. This study used the EM algorithm, which is one of the maximum likelihood estimations, for the parameters of combined mixture distributions with a certain relationship between two normal distributions for the time headway of vehicles. The time headway distribution of vehicle arrival is difficult to represent well with previously known single probability distributions. But as a result of this analysis, it can be represented by estimating the parameters of the mixture probability distribution using the EM algorithm. The result of a goodness-of-fit test was statistically significant at a significance level of 1%, which proves the reliability of parameter estimation of the mixture probability distribution using the EM algorithm.

Computational Prediction of Solvation Free Energies of Amino Acids with Genetic Algorithm

  • Park, Jung-Hum;Lee, Jin-Won;Park, Hwang-Seo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1247-1251
    • /
    • 2010
  • We propose an improved solvent contact model to estimate the solvation free energies of amino acids from individual atomic contributions. The modification of the solvation model involves the optimization of three kinds of parameters in the solvation free energy function: atomic fragmental volume, maximum atomic occupancy, and atomic solvation parameters. All of these atomic parameters for 17 atom types are developed by the operation of a standard genetic algorithm in such a way to minimize the difference between experimental and calculated solvation free energies. The present solvation model is able to predict the experimental solvation free energies of amino acids with the squared correlation coefficients of 0.94 and 0.93 for the parameterization with Gaussian and screened Coulomb potential as the envelope functions, respectively. This result indicates that the improved solvent contact model with the newly developed atomic parameters would be a useful tool for the estimation of the molecular solvation free energy of a protein in aqueous solution.

A Study on the Estimation of Underground Parameters by Coupling of Finite and Boundary Elements (유한요소 - 경계요소 조합에 의한 지반매개변수 추정에 관한 연구)

  • 김문겸;장정범;오금호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.28-34
    • /
    • 1995
  • Behavior of underground structural systems is usually complicated because of various unknown parameters. In order to construct those structural systems safely and economically, exact identification of the system parameters and accurate analysis of the system behaviors are essentially required. In this study, a forward analysis program, which is able to eliminate numerical errors due to far field boundary effect, is developed by coupling finite and boundary elements. In this coupled analysis, boundary elements are used in the semi-infinite domain where stress variation is small, and finite elements in the stress concentration region where material nonlinearity should be considered. Then, a back analysis program which can identify the system parameters is developed using the direct method to be combined with the forward analysis program. The elastic modulus and initial stress, which are most important in the description of the behavior of underground structures, are taken as the system parameters. A simple example is examined 0 show that the method can be used effectively.

  • PDF

A Study on Observability of Model Parameters for Robot Calibration (로봇 캘리브레이션을 위한 모델 파라미터의 관측성 연구)

  • 범진환;양수상;임생기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.64-71
    • /
    • 1997
  • Objective of calibration is to find out the accurate kinematic relationships between robot joint angles and the position of the end-effector by estimating accurate model parameters defining the kinematic function. Estimating the model parameters requires measurement of the end-effector position at a number of different robot configurations. This paper studies the implication of measurement configurations in robot calibration. For selecting appropriate measurement configurations in robot calibration, an index is defined to measure the observability of the model parameters with respect to a set of robot configurations. It is found that, as the observability index of the selected measurement configurations increase the attribution of the position errors to the parameter errors becomes dominant while the effects of the measurement and unmodeled errors are less significant; consequently better estimation of parameter errors is expected. To demonstrate the implication of the observability measure in robot calibration, computer simulations are performed and their results are discussed.

  • PDF

Off-Line Parameter Identification of Permanent Magnet Synchronous Motor Using a Goertzel Algorithm

  • Yoon, Jae-Seung;Lee, Kyoung-Gu;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2262-2270
    • /
    • 2015
  • Generally, internal parameters of the motors and generators can be divided to the resistance and inductance components. They can become a cause of the changing internal parameters because they have sensitive characteristics due to external conditions. The changed parameters can generate the outputs which include error values from the speed and current controllers. Also, it can bring the temperature increase and mechanical damage to the system. Therefore, internal parameters of the motors and generators need to obtain their values according to the external conditions because it can prevent the mechanical damage caused by the changed parameters. In this paper, the off-line parameter identification method is verified using the Goertzel algorithm. The motor used in the simulation and experiments is an interior permanent magnet synchronous motor (IPMSM), and the proposed algorithm is verified by the simulation and experimental results.

A Study on the Optimization of Parameters for Muskingum Routing Method (Muskingum 홍수 추적방법의 매개변수 최적화에 관한 연구)

  • Cho, Hyeon-Kyeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • This study presents techniques for the estimation of parameters in flood routing method of natural channel.. The Muskingum routing method is the most widely used method of hydrologic stream channel routing. In this paper, Genetic Algorithm and Fletcher-Powell method is applied to determine parameters(K and x) of the Muskingum routing method. The results of the approach shows that Genetic Algorithm method can be one of methods to determine parameters of the Muskingum routing method. Based on the analysis for estimated parameters and the comparison with the results from observed data, the applicability of Genetic Algorithm is verified.

  • PDF

Estimation of Muscle-tendon Model Parameters Based on a Numeric Optimization (최적화기법에 의한 근육-건 모델 파라미터들의 추정)

  • Nam, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.122-130
    • /
    • 2009
  • The analysis of human movement requires the knowledge of the Hill type muscle parameters, the muscle-tendon and moment arm length change as a function of joint angles. However, values of a subject's muscle parameters are very difficult to identify. It turns out from a sensitivity analysis that the tendon slack length and maximum muscle force are the two critical parameters among the Hill-type muscle model. Therefore, it could be claimed that the variation of the tendon slack length and maximum muscle force from the Delp's reference data will change the muscle characteristics of a subject remarkably. A numeric optimization method to search these tendon parameters specific to a subject is proposed, and the accuracy of the developed algorithm is evaluated through a numerical simulation.

Parametric studies on smoothed particle hydrodynamic simulations for accurate estimation of open surface flow force

  • Lee, Sangmin;Hong, Jung-Wuk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.85-101
    • /
    • 2020
  • The optimal parameters for the fluid-structure interaction analysis using the Smoothed Particle Hydrodynamics (SPH) for fluids and finite elements for structures, respectively, are explored, and the effectiveness of the simulations with those parameters is validated by solving several open surface fluid problems. For the optimization of the Equation of State (EOS) and the simulation parameters such as the time step, initial particle spacing, and smoothing length factor, a dam-break problem and deflection of an elastic plate is selected, and the least squares analysis is performed on the simulation results. With the optimal values of the pivotal parameters, the accuracy of the simulation is validated by calculating the exerted force on a moving solid column in the open surface fluid. Overall, the SPH-FEM coupled simulation is very effective to calculate the fluid-structure interaction. However, the relevant parameters should be carefully selected to obtain accurate results.

Neuro-fuzzy modeling of deformation parameters for fusion-barriers

  • Akkoyun, Serkan;Torun, Yunis
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1612-1618
    • /
    • 2021
  • The fusion-barrier distribution is very sensitive to the structure of the colliding nuclei such as nuclear quadrupole and hexadecapole deformation parameters and their signs. If the nuclei that enter the fusion reaction are deformed, the barrier problem becomes complicated. Therefore the deformation parameters are taken into account in the calculations. In this study, Neuro-Fuzzy approach, ANFIS, method has been used for the estimation of ground-state quadrupole (𝜀2) and hexadecapole (𝜀4) deformation parameters for the nuclei. According to the results, the method is suitable for this task and one can confidently use it to obtain the data that is not available in the literature.