• Title/Summary/Keyword: parameters estimation

Search Result 4,064, Processing Time 0.031 seconds

Estimation of Defect Clustering Parameter Using Markov Chain Monte Carlo (Markov Chain Monte Carlo를 이용한 반도체 결함 클러스터링 파라미터의 추정)

  • Ha, Chung-Hun;Chang, Jun-Hyun;Kim, Joon-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.99-109
    • /
    • 2009
  • Negative binomial yield model for semiconductor manufacturing consists of two parameters which are the average number of defects per die and the clustering parameter. Estimating the clustering parameter is quite complex because the parameter has not clear closed form. In this paper, a Bayesian approach using Markov Chain Monte Carlo is proposed to estimate the clustering parameter. To find an appropriate estimation method for the clustering parameter, two typical estimators, the method of moments estimator and the maximum likelihood estimator, and the proposed Bayesian estimator are compared with respect to the mean absolute deviation between the real yield and the estimated yield. Experimental results show that both the proposed Bayesian estimator and the maximum likelihood estimator have excellent performance and the choice of method depends on the purpose of use.

Navigation of a mobile robot using active landmarks (능동 표식을 이용한 이동 로봇의 운행)

  • 노영식;김재숙;권석근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.916-919
    • /
    • 1996
  • An real-time active beacon localization system for mobile robots is developed and implemented. This system permits the estimation of robot positions when detecting light sources by PSD(Position Sensitive Detector) sensor which are placed sparsely over the robot's work space as beacons(or landmarks). An LSE(Least Square Estimation) method is introduced to calibrate the internal parameters of a model for the beacon and robot position. The proposed system has two operational modes of position estimation. One is the initial position calculation by the detection of two or more light sources positions of which are known. The other is the continuous position compensation that calculates the position and heading of the robot using the IEKF(Iterated Extended Kalman Filter) applied to the beacon and dead-reckoning data. Practical experiments show that the estimated position obtained by this system is precise enough to be useful for the navigation of robots.

  • PDF

Parameter Estimation of an HIV Model with Mutants using Sporadically Sampled Data (산발적인 데이터를 이용한 HIV 변이모델의 파라미터 추정)

  • Kim, Seok-Kyoon;Kim, Jung-Su;Yoon, Tae-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.753-759
    • /
    • 2011
  • The HIV (Human Immunodeficiency Virus) causes AIDS (Acquired Immune Deficiency Syndrome). The process of infection and mutation by HIV can be described by a 3rd order state equation. For this HIV model that includes the dynamics of the mutant virus, we present a parameter estimation scheme using two state variables sporadically measured, out of the three, by employing a genetic algorithm. It is assumed that these non-uniformly sampled measurements are subject to random noises. The effectiveness of the proposed parameter estimation is demonstrated by simulations. In addition, the estimated parameters are used to analyze the equilibrium points of the HIV model, and the results are shown to be consistent with those previously obtained.

On-Line Estimation of Cell Growth from Agitation Speed in DO-Stat Culture of a Filamentous Microorganism, Agaricus blazei

  • Na, Jeong-Geol;Kim, Hyun-Han;Chang, Yong-Keun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.571-575
    • /
    • 2005
  • A simple, but effective on-line method for estimating the mycelial cell mass concentration from agitation speed data, a most readily-available process variable, has been developed for DO-stat cultures of Agaricus blazei. The dynamic change of dissolved oxygen concentration (DOC) in the initial transient period and the change in yield were considered in the development of the estimation algorithm or estimator. Parameters in the estimation algorithm were calculated from the agitation speed data at 20% of DOC. The proposed estimator could accurately predict the cell mass concentration regardless of DOC levels in the tested range of $10{\sim}40%$, showing a good extrapolation capability.

Linear Prediction Approach for Accurate Dual-Channel Sine-Wave Parameter Estimation in White Gaussian Noise

  • So, Hing-Cheung;Zhou, Zhenhua
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.641-644
    • /
    • 2012
  • The problem of sinusoidal parameter estimation at two channels with common frequency in white Gaussian noise is addressed. By making use of the linear prediction property, an iterative linear least squares (LLS) algorithm for accurate frequency estimation is devised. The remaining parameters are then determined according to the LLS fit with the use of the frequency estimate. It is proven that the variance of the frequency estimate achieves Cram$\acute{e}$r-Rao lower bound at sufficiently small noise conditions.

Estimation of Shoulder Flexion Torque and Angle from Surface Electromyography for Physical Human-Machine Interaction (물리적 인간-기계 상호작용을 위한 표면 근전도 신호 기반의 어깨 굴곡 토크 및 각도 추정)

  • Park, Ki-Han;Lee, Dong-Ju;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.663-669
    • /
    • 2011
  • This paper examines methods to estimate torque and angle in shoulder flexion from surface electromyography(sEMG) signals for intuitive and delicate control of robotic assistance device. Five muscles on the upper arm, three for shoulder flexion and two for shoulder extension, were used to offer favorable sEMG recording conditions in the estimation. The methods tested were the mean absolute value (MAV) with linear regression and the artificial neural network (ANN) method. An optimal condition was sought by varying combination of muscles used and the parameters in each method. The estimation performance was evaluated using the correlation values and normalized root mean square error values. In addition, we discussed their possible use as an estimation of motion intent of a user or as a command input in a physical human-machine interaction system.

Estimation of solid friction in mechanical systems

  • Shimizu, Tomoharu;Ishihara, Tadashi;Inooka-Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.158-163
    • /
    • 1992
  • This paper describes the estimation of the solid friction in mechanical systems by using the extended Kalman filtering techniques. We proposed two stochastic model for the estimation. The one is the 'parametric model' which represents the friction characteristics by an exponential function with unknown parameters. The other is the 'blind model' which does not assume an explicit model but regard the effect of the friction as an unknown input to a known dynamic system. For both models, we give estimation algorithms to generate the filtered estimate and the smoothed estimate with a fixed lag. The filtered estimate can be generated on-line for compensating the solid friction in mechanical systems. Although on-line applications are impossible, the smoothed estimate is more accurate and can be used to grasp precise friction characteristics. Simulation and experimental results arc presented to show the effectiveness of the proposed techniques.

  • PDF

Time-Delay Estimation using Wavelet Theory and Higher-Order Statistics (웨이블릿 이론과 고차통계 처리기법을 이용한 시간지연 추정)

  • 차용철;김용남;정지현;남상원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.630-635
    • /
    • 1998
  • The objective of this paper is to propose a new efficient technique for the estimation of time-delay parameters using wavelet theory and third-order cumulants, yielding good performance even in the case of low SNR. In particular, band-limited non-Gaussian signals with non-zero skewness and spatially correlated Gaussian noises are considered here. The approach is based on the fact that the effects of spatially correlated Gaussian noises on time-delay estimation can be reduced by using the projection sequences (based on the redundant wavelet decomposition) of given measurements in the higher-order cumulant domain. Finally, the performance of the proposed approach is demonstrated using simulations.

  • PDF

Sensorless Induction Motor Vector Control Using Stator Current-based MRAC (고정자 전류 기반의 모델 기준 적응 제어를 애용한 유도전동기의 센서리스 벡터제어)

  • 박철우;최병태;권우현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.692-699
    • /
    • 2003
  • A novel rotor speed estimation method using Model Reference Adaptive Control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed mettled, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estmation error is unclear. Yet, in the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation and is robust to the parameters error In addition, the proposed method of offers a considerable improvement in the performance of a sensorless vector controller at a low speed. The superiority of the proposed method is verified by simulation and experiment in a low speed region and at a zero-speed.

Pose Estimation with Binarized Multi-Scale Module

  • Choi, Yong-Gyun;Lee, Sukho
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.95-100
    • /
    • 2018
  • In this paper, we propose a binarized multi-scale module to accelerate the speed of the pose estimating deep neural network. Recently, deep learning is also used for fine-tuned tasks such as pose estimation. One of the best performing pose estimation methods is based on the usage of two neural networks where one computes the heat maps of the body parts and the other computes the part affinity fields between the body parts. However, the convolution filtering with a large kernel filter takes much time in this model. To accelerate the speed in this model, we propose to change the large kernel filters with binarized multi-scale modules. The large receptive field is captured by the multi-scale structure which also prevents the dropdown of the accuracy in the binarized module. The computation cost and number of parameters becomes small which results in increased speed performance.