• Title/Summary/Keyword: parameters estimation

Search Result 4,064, Processing Time 0.04 seconds

Estimation of R factor using hourly rainfall data

  • Risal, Avay;Kum, Donghyuk;Han, Jeongho;Lee, Dongjun;Lim, Kyoungjae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.260-260
    • /
    • 2016
  • Soil erosion is a very serious problem from agricultural as well as environmental point of view. Various computer models have been used to estimate soil erosion and assess erosion control practice. Universal Soil loss equation (USLE) is a popular model which has been used in many countries around the world. Erosivity (USLE R-factor) is one of the USLE input parameters to reflect impacts of rainfall in computing soil loss. Value of R factor depends upon Energy (E) and maximum rainfall intensity of specific period ($I30_{max}$) of that rainfall event and thus can be calculated using higher temporal resolution rainfall data such as 10 minute interval. But 10 minute interval rainfall data may not be available in every part of the world. In that case we can use hourly rainfall data to compute this R factor. Maximum 60 minute rainfall ($I60_{max}$) can be used instead of maximum 30 minute rainfall ($I30_{max}$) as suggested by USLE manual. But the value of Average annual R factor computed using hourly rainfall data needs some correction factor so that it can be used in USLE model. The objective of our study are to derive relation between averages annual R factor values using 10 minute interval and hourly rainfall data and to determine correction coefficient for R factor using hourly Rainfall data.75 weather stations of Korea were selected for our study. Ten minute interval rainfall data for these stations were obtained from Korea Meteorological Administration (KMA) and these data were changed to hourly rainfall data. R factor and $I60_{max}$ obtained from hourly rainfall data were compared with R factor and $I30_{max}$ obtained from 10 minute interval data. Linear relation between Average annual R factor obtained from 10 minute interval rainfall and from hourly data was derived with $R^2=0.69$. Correction coefficient was developed for the R factor calculated using hourly rainfall data.. Similarly, the relation was obtained between event wise $I30_{max}$ and $I60_{max}$ with higher $R^2$ value of 0.91. Thus $I30_{max}$ can be estimated from I60max with higher accuracy and thus the hourly rainfall data can be used to determine R factor more precisely by multiplying Energy of each rainfall event with this corrected $I60_{max}$.

  • PDF

Contact forces generated by fallen debris

  • Sun, Jing;Lam, Nelson;Zhang, Lihai;Gad, Emad;Ruan, Dong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.589-603
    • /
    • 2014
  • Expressions for determining the value of the impact force as reported in the literature and incorporated into code provisions are essentially quasi-static forces for emulating deflection. Quasi-static forces are not to be confused with contact force which is generated in the vicinity of the point of contact between the impactor and target, and contact force is responsible for damage featuring perforation and denting. The distinction between the two types of forces in the context of impact actions is not widely understood and few guidelines have been developed for their estimation. The value of the contact force can be many times higher than that of the quasi-static force and lasts for a matter of a few milli-seconds whereas the deflection of the target can evolve over a much longer time span. The stiffer the impactor the shorter the period of time to deliver the impulsive action onto the target and consequently the higher the peak value of the contact force. This phenomenon is not taken into account by any contemporary codified method of modelling impact actions which are mostly based on the considerations of momentum and energy principles. Computer software such as LS-DYNA has the capability of predicting contact force but the dynamic stiffness parameters of the impactor material which is required for input into the program has not been documented for debris materials. The alternative, direct, approach for an accurate evaluation of the damage potential of an impact scenario is by physical experimentation. However, it can be difficult to extrapolate observations from laboratory testings to behaviour in real scenarios when the underlying principles have not been established. Contact force is also difficult to measure. Thus, the amount of useful information that can be retrieved from isolated impact experiments to guide design and to quantify risk is very limited. In this paper, practical methods for estimating the amount of contact force that can be generated by the impact of a fallen debris object are introduced along with the governing principles. An experimental-calibration procedure forming part of the assessment procedure has also been verified.

Estimation of Duck House Litter Evaporation Rate Using Machine Learning (기계학습을 활용한 오리사 바닥재 수분 발생량 분석)

  • Kim, Dain;Lee, In-bok;Yeo, Uk-hyeon;Lee, Sang-yeon;Park, Sejun;Decano, Cristina;Kim, Jun-gyu;Choi, Young-bae;Cho, Jeong-hwa;Jeong, Hyo-hyeog;Kang, Solmoe
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.77-88
    • /
    • 2021
  • Duck industry had a rapid growth in recent years. Nevertheless, researches to improve duck house environment are still not sufficient enough. Moisture generation of duck house litter is an important factor because it may cause severe illness and low productivity. However, the measuring process is difficult because it could be disturbed with animal excrements and other factors. Therefore, it has to be calculated according to the environmental data around the duck house litter. To cut through all these procedures, we built several machine learning regression model forecasting moisture generation of litter by measured environment data (air temperature, relative humidity, wind velocity and water contents). 5 models (Multi Linear Regression, k-Nearest Neighbors, Support Vector Regression, Random Forest and Deep Neural Network). have been selected for regression. By using R-Square, RMSE and MAE as evaluation metrics, the best accurate model was estimated according to the variables for each machine learning model. In addition, to address the small amount of data acquired through lab experiments, bootstrapping method, a technique utilized in statistics, was used. As a result, the most accurate model selected was Random Forest, with parameters of n-estimator 200 by bootstrapping the original data nine times.

Estimation of Resistance Bias Factors for the Ultimate Limit State of Aggregate Pier Reinforced Soil (쇄석다짐말뚝으로 개량된 지반의 극한한계상태에 대한 저항편향계수 산정)

  • Bong, Tae-Ho;Kim, Byoung-Il;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.6
    • /
    • pp.17-26
    • /
    • 2019
  • In this study, the statistical characteristics of the resistance bias factors were analyzed using a high-quality field load test database, and the total resistance bias factors were estimated considering the soil uncertainty and construction errors for the application of the limit state design of aggregate pier foundation. The MLR model by Bong and Kim (2017), which has a higher prediction performance than the previous models was used for estimating the resistance bias factors, and its suitability was evaluated. The chi-square goodness of fit test was performed to estimate the probability distribution of the resistance bias factors, and the normal distribution was found to be most suitable. The total variability in the nominal resistance was estimated including the uncertainty of undrained shear strength and construction errors that can occur during the aggregate pier construction. Finally, the probability distribution of the total resistance bias factors is shown to follow a log-normal distribution. The parameters of the probability distribution according to the coefficient of variation of total resistance bias factors were estimated by Monte Carlo simulation, and their regression equations were proposed for simple application.

Estimation of the major sources for organic aerosols at the Anmyeon Island GAW station (안면도에서의 초미세먼지 유기성분 주요 영향원 평가)

  • Han, Sanghee;Lee, Ji Yi;Lee, Jongsik;Heo, Jongbae;Jung, Chang Hoon;Kim, Eun-Sill;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.135-144
    • /
    • 2018
  • Based on a two-year measurement data, major sources for the ambient carbonaceous aerosols at the Anmyeon Global Atmosphere Watch (GAW) station were identified by using the Positive Matrix Factorization (PMF) model. The particulate matter less than or equal to $2.5{\mu}m$ in aerodynamic diameter (PM2.5) aerosols were sampled between June 2015 to May 2017 and carbonaceous species including ~80 organic compounds were analyzed. When the number of factors was 5 or 6, the performance evaluation parameters showed the best results, With 6 factor case, the characteristics of transported factors were clearer. The 6 factors were identified with various analyses including chemical characteristics and air parcel movement analysis. The 6 factors with their relative contributions were (1) anthropogenic Secondary Organic Aerosols (SOA) (10.3%), (2) biogenic sources (24.8%), (3) local biomass burning (26.4%), (4) transported biomass burning (7.3%), (5) combustion related sources (12.0%), and (6) transported sources (19.2%). The air parcel movement analysis result and seasonal variation of the contribution of these factors also supported the identification of these factors. Thus, the Anmyeon Island GAW station has been affected by both regional and local sources for the carbonaceous aerosols.

A Comparison of Estimation Methods for Willingness to Pay Amount in Constructed Oceans and Fisheries Resources Market by Contingent Valuation Method (해양수산자원 가상시장의 지불의사금액 추정방법 비교)

  • Kang, Seok-Kyu
    • The Journal of Fisheries Business Administration
    • /
    • v.49 no.3
    • /
    • pp.85-99
    • /
    • 2018
  • This study is to compare and evaluate the estimating method of WTP(willingness to pay) for the valuation of oceans and fisheries resources with non-market goods characteristics using contingent valuation method. In general, when estimating parameters of the WTP function, we should take into account the assumption of probability distribution, inclusion of covariates, method of inducement of payment, and the treatment of 0 payment intention and resistance responses. This study utilizes survey data that was used to estimate the value of fisheries resource protection zones, with a total of 1,200 samples. The main results of this study are summarized as follows: First, the final willness to pay amount is estimated at a statistical significance of less than 1 percent, and the distribution of the final willness to pay amount is from \6,926 of the double bounded dichotomous model to \10,721 of the spike model. Second, the willness to pay amount based on assumptions about the normal and logistic probability distributions are estimated to be \9,429 and \9,370 respectively, so there was no significant difference. Third, the willness to pay amount of the single bounded dichotomous model and the double bounded dichotomous model are estimated to be \8,951 and \6,926 respectively, making a relatively large difference. Fourth, the willness to pay amount of the model without covariates and the model with covariates are estimated to be \9,429 and \8,951, respectively, so the willness to pay amount is underestimated when the covariates are included. Fifth, the Spike model that considers zero payment intention and resistance response estimates \10,405 as the highest payment in this study. Finally, the CVM analysis guidelines proposed by the Korea Development Institute (KDI) are estimated to be \9,749 and \10,405 respectively, depending on including no covariates and with covariates. Compared to other models, the final willness to pay amount is not estimated underestimated. Therefore this study suggests the use of KDI's guidance under government public policy projects. In view of these results, the estimating model for willness to pay amount model will be selected by considering the sample size, the suitability of the model, the sign of the estimated coefficient, the statistical significance, the ratio of the zero payment intention and the payment rejection. And, for CVMs on government public policy projects, it is desirable to estimate by the method proposed by the KDI.

Regional Analysis of Extreme Values by Particulate Matter(PM2.5) Concentration in Seoul, Korea (서울시 초미세먼지(PM2.5) 지역별 극단치 분석)

  • Oh, Jang Wook;Lim, Tae Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.1
    • /
    • pp.47-57
    • /
    • 2019
  • Purpose: This paper aims to investigate the concentration of fine particulate matter (PM2.5) in the Seoul area by predicting unhealthy days due to PM2.5 and comparing the regional differences. Methods: The extreme value theory is adopted to model and compare the PM2.5 concentration in each region, and each best model is selected through the goodness of fitness test. The maximum likelihood estimation technique is applied to estimate the parameters of each distribution, and the fitness of each model is measured by the mean absolute deviation. The selected model is used to estimate the number of unhealthy days (above $75{\mu}g/m^3$ PM2.5 concentrations) in each region, with which the actual number of unhealthy days are compared. In addition, the level of PM2.5 concentration in each region is analyzed by calculating the return levels for periods of 6 months, 1 year, 3 years, and 5 years. Results: The Mapo (MP) area revealed the most unhealthy days, followed by Gwanak (GW) and Yangcheon (YC). On the contrary, the number of unhealthy days was low in Seodaemun (SDM), Songpa (SP) and Gangbuk (GB) areas. The return level of PM2.5 was high in Gangnam (GN), Dongjak (DJ) and YC. It will be necessary to prepare for PM2.5 than other regions. On the contrary, Gangbuk (GB), Nowon (NW) and Seodaemun (SDM) showed relatively low return levels for PM2.5. However, in most of the regions of Seoul, PM25 is generated at a very poor level ($75{\mu}g/m^3$) every 6months period, and more than $100{\mu}g/m^3$ PM2.5 occur every 3 years period. Most areas in Seoul require more systematic management of PM2.5. Conclusion: In this paper, accurate prediction and analysis of high concentration of PM2.5 were attempted. The results of this research could provide the basis for the Seoul Metropolitan Government to establish policies for reducing PM2.5 and measuring its effects.

Evaluation of GPM satellite and S-band radar rain data for flood simulation using conditional merging method and KIMSTORM2 distributed model (조건부합성 기법과 KIMSTORM2 분포형 수문모형을 이용한 GPM 위성 강우자료 및 Radar 강우자료의 홍수모의 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This study performed to simulate the watershed storm runoff using data of S-band dual-polarization radar rain, GPM (Global Precipitation Mission) satellite rain, and observed rainfall at 21 ground stations operated by KMA (Korea Meteorological Administration) respectively. For the 3 water level gauge stations (Sancheong, Changchon, and Namgang) of NamgangDam watershed ($2,293km^2$), the KIMSTORM2 (KIneMatic wave STOrm Runoff Model2) was applied and calibrated with parameters of initial soil moisture contents, Manning's roughness of overland and stream to the event of typhoon CHABA (82 mm in watershed aveprage) in $5^{th}$ October 2016. The radar and GPM data was corrected with CM (Conditional Merging) method such as CM-corrected Radar and CM-corrected GPM. The CM has been used for accurate rainfall estimation in water resources and meteorological field and the method combined measured ground rainfall and spatial data such as radar and satellite images by the kriging interpolation technique. For the CM-corrected Radar and CM-corrected GPM data application, the determination coefficient ($R^2$) was 0.96 respectively. The Nash-Sutcliffe efficiency (NSE) was 0.96 and the Volume Conservation Index (VCI) was 1.03 respectively. The CM-corrected data of Radar and GPM showed good results for the CHABA peak runoff and runoff volume simulation and improved all of $R^2$, NSE, and VCI comparing with the original data application. Thus, we need to use and apply the radar and satellite data to monitor the flood within the watershed.

Accuracy Assessment of Aerial Triangulation of Network RTK UAV (네트워크 RTK 무인기의 항공삼각측량 정확도 평가)

  • Han, Soohee;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.663-670
    • /
    • 2020
  • In the present study, we assessed the accuracy of aerial triangulation using a UAV (Unmanned Aerial Vehicle) capable of network RTK (Real-Time Kinematic) survey in a disaster situation that may occur in a semi-urban area mixed with buildings. For a reliable survey of check points, they were installed on the roofs of buildings, and static GNSS (Global Navigation Satellite System) survey was conducted for more than four hours. For objective accuracy assessment, coded aerial targets were installed on the check points to be automatically recognized by software. At the instance of image acquisition, the 3D coordinates of the UAV camera were measured using VRS (Virtual Reference Station) method, as a kind of network RTK survey, and the 3-axial angles were achieved using IMU (Inertial Measurement Unit) and gimbal rotation measurement. As a result of estimation and update of the interior and exterior orientation parameters using Agisoft Metashape, the 3D RMSE (Root Mean Square Error) of aerial triangulation ranged from 0.153 m to 0.102 m according to the combination of the image overlap and the angle of the image acquisition. To get higher aerial triangulation accuracy, it was proved to be effective to incorporate oblique images, though it is common to increase the overlap of vertical images. Therefore, to conduct a UAV mapping in an urgent disaster site, it is necessary to acquire oblique images together rather than improving image overlap.

Height-DBH Growth Models of Major Tree Species in Chungcheong Province (충청지역 주요 수종의 수고-흉고직경 생장모델에 관한 연구)

  • Seo, Yeon Ok;Lee, Young Jin;Rho, Dai Kyun;Kim, Sung Ho;Choi, Jung Kee;Lee, Woo Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.62-69
    • /
    • 2011
  • Six commonly used non-linear growth functions were fitted to individual tree height-dbh data of eight major tree species measured by the $5^{th}$ National Forest Inventory in Chungcheong province. A total of 2,681 trees were collected from permanent sample plots across Chungcheong province. The available data for each species were randomly splitted into two sets: the majority (90%) was used to estimate model parameters and the remaining data (10%) were reserved to validate the models. The performance of the models was compared and evaluated by $R^2$, RMSE, mean difference (MD), absolute mean difference (AMD) and mean difference(MD) for diameter classes. The combined data (100%) were used for final model fitting. The results showed that these six sigmoidal models were able to capture the height-diameter relationships and fit the data equally well, but produced different asymptote estimates. Sigmoidal growth models such as Chapman-Richards, Weibull functions provided the most satisfactory height predictions. The effect of model performance on stem volume estimation was also investigated. Tree volumes of different species were computed by the Forest Resources Evaluation and Prediction Program using observed range of diameter and the predicted tree total height from the six models. For trees with diameter less than 30 cm, the six height-dbh models produced very similar results for all species, while more differentiation among the models was observed for large-sized trees.