• Title/Summary/Keyword: parameters estimation

Search Result 4,064, Processing Time 0.037 seconds

Development of 3D Mapping Algorithm with Non Linear Curve Fitting Method in Dynamic Contrast Enhanced MRI

  • Yoon Seong-Ik;Jahng Geon-Ho;Khang Hyun-Soo;Kim Young-Joo;Choe Bo-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 2005
  • Purpose: To develop an advanced non-linear curve fitting (NLCF) algorithm for dynamic susceptibility contrast study of brain. Materials and Methods: The first pass effects give rise to spuriously high estimates of $K^{trans}$ in voxels with large vascular components. An explicit threshold value has been used to reject voxels. Results: By using this non-linear curve fitting algorithm, the blood perfusion and the volume estimation were accurately evaluated in T2*-weighted dynamic contrast enhanced (DCE)-MR images. From the recalculated each parameters, perfusion weighted image were outlined by using modified non-linear curve fitting algorithm. This results were improved estimation of T2*-weighted dynamic series. Conclusion: The present study demonstrated an improvement of an estimation of kinetic parameters from dynamic contrast-enhanced (DCE) T2*-weighted magnetic resonance imaging data, using contrast agents. The advanced kinetic models include the relation of volume transfer constant $K^{trans}\;(min^{-1})$ and the volume of extravascular extracellular space (EES) per unit volume of tissue $\nu_e$.

  • PDF

Wave Information Estimation and Revision Using Linear Regression Model (선형회귀모델을 이용한 파랑 정보 예측 및 보정)

  • Lim, Dong-hee;Kim, Jin-soo;Lee, Byung-Gil
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1377-1385
    • /
    • 2016
  • Conventional X-band marine radar has been used as one of the effective tools for collecting and retrieving ocean surface information parameters for three decades. Several wave information extracting algorithms have been designed in such a way that they can be utilized for efficiently estimating sea surface wave parameters such as current velocities, wave direction, significant wave heights in VTS (Vessel Traffic Service). However, their performances are still restricted. For the purpose of overcoming the performance limits, in this paper, first the conventional algorithms are analyzed and their performances are compared, and then a new control algorithm is proposed. Furthermore, we try to improve the estimation performances of typical wave parameters including wave directions and significant wave heights by introducing linear regression model in the process of computing wave information extraction. Through several simulations with the X-band radar images, it is shown that the proposed method is very effective in estimating the wave information compared to the real measured buoy data.

Novel Hilbert spectrum-based seismic intensity parameters interrelated with structural damage

  • Tyrtaiou, Magdalini;Elenas, Anaxagoras
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.197-208
    • /
    • 2019
  • The objective of this study is to propose new seismic intensity parameters based on the Hilbert spectrum and to associate them with the seismic damage potential. In recent years the assessment of even more seismic features derived from the seismic acceleration time-histories was associated with the structural damage. For a better insight into the complex seismic acceleration time-history, Hilbert-Huang Transform (HHT) analysis is utilized for its processing, and the Hilbert spectrum is obtained. New proposed seismic intensity parameters based on the Hilbert spectrum are derived. The aim is to achieve a significant estimation of the seismic damage potential on structures from the proposed new intensity parameters confirmed by statistical methods. Park-Ang overall structural damage index is used to describe the postseismic damage status of structures. Thus, a set of recorded seismic accelerograms from all over the word is applied on a reinforced concrete frame structure, and the Park-Ang indices through nonlinear dynamic analysis are provided and considered subsequently as reference numerical values. Conventional seismic parameters, with well-known seismic structural damage interrelation, are evaluated for the same set of excitations. Statistical procedures, namely correlation study and multilinear regression analysis, are applied on the set of the conventional parameters and the set of proposed new parameters separately, to confirm their interrelation with the seismic structural damage. The regression models are used for the evaluation of the structural damage indices for every set of parameters, respectively. The predicted numerical values of the structural damage indices evaluated from the two sets of seismic intensity parameters are inter-compared with the reference values. The numerical results confirm the ability of the proposed Hilbert spectrum based new seismic intensity parameters to approximate the postseismic structural damage with a smaller Standard Error of Estimation than this accomplished of the conventional ones.

A Construction Method for Personalized e-Learning System Using Dynamic Estimations of Item Parameters and Examinees' Abilities

  • Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.19-23
    • /
    • 2008
  • This paper presents a novel method to construct a personalized e-Learning system based on dynamic estimations of item parameters and learners' abilities, where the learning content objects are of the same intrinsic quality or homogeneously distributed and the estimations are carried out using IRT(Item Response Theory). The system dynamically connects the test and the corresponding learning procedures. Test results are directly applied to estimate examinee's ability and are used to modify the item parameters and the difficulties of learning content objects during the learning procedure is being operated. We define the learning unit 'Node' as an amount of learning objects operated so that new parameters can be re-estimated. There are various content objects in a Node and the parameters estimated at the end of current Node are directly applied to the next Node. We offer the most appropriate learning Node for a person's ability throughout the estimation processes of IRT. As a result, this scheme improves learning efficiency in web-base e-Learning environments offering the most appropriate learning objects and items to the individual students according to their estimated abilities. This scheme can be applied to any e-Learning subject having homogeneous learning objects and unidimensional test items. In order to construct the system, we present an operation scenario using the proposed system architecture with the essential databases and agents.

Machine Learning Approach to Estimation of Stellar Atmospheric Parameters

  • Han, Jong Heon;Lee, Young Sun;Kim, Young kwang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.54.2-54.2
    • /
    • 2016
  • We present a machine learning approach to estimating stellar atmospheric parameters, effective temperature (Teff), surface gravity (log g), and metallicity ([Fe/H]) for stars observed during the course of the Sloan Digital Sky Survey (SDSS). For training a neural network, we randomly sampled the SDSS data with stellar parameters available from SEGUE Stellar Parameter Pipeline (SSPP) to cover the parameter space as wide as possible. We selected stars that are not included in the training sample as validation sample to determine the accuracy and precision of each parameter. We also divided the training and validation samples into four groups that cover signal-to-noise ratio (S/N) of 10-20, 20-30, 30-50, and over 50 to assess the effect of S/N on the parameter estimation. We find from the comparison of the network-driven parameters with the SSPP ones the range of the uncertainties of 73~123 K in Teff, 0.18~0.42 dex in log g, and 0.12~0.25 dex in [Fe/H], respectively, depending on the S/N range adopted. We conclude that these precisions are high enough to study the chemical and kinematic properties of the Galactic disk and halo stars, and we will attempt to apply this technique to Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), which plans to obtain about 8 million stellar spectra, in order to estimate stellar parameters.

  • PDF

Parameter Estimation for Multipath Error in GPS Dual Frequency Carrier Phase Measurements Using Unscented Kalman Filters

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jae;Kang, Tea-Sam;Jee, Gyu-In;Kim, Jeong-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.388-396
    • /
    • 2007
  • This paper describes a multipath estimation method for Global Positioning System (GPS) dual frequency carrier phase measurements. Multipath is a major error source in high precision GPS applications, i.e., carrier phase measurements for precise positioning and attitude determinations. In order to estimate and remove multipath at carrier phase measurements, an array GPS antenna system has been used. The known geometry between the antennas is used to estimate multipath parameters. Dual frequency carrier phase measurements increase the redundancy of measurements, so it can reduce the number of antennas. The unscented Kalman filter (UKF) is recently applied to many areas to overcome some of the limitations of the extended Kalman filter (EKF) such as weakness to severe nonlinearity. This paper uses the UKF for estimating multipath parameters. A series of simulations were performed with GPS antenna arrays located on a straight line with one reflector. The geometry information of the antenna array reduces the number of estimated multipath parameters from four to three. Both the EKF and the UKF are used as estimation algorithms and the results of the EKF and the UKF are compared. When the initial parameters are far from true parameters, the UKF shows better performance than the EKF.

Estimation of Suitable Methodology for Determining Weibull Parameters for the Vortex Shedding Analysis of Synovial Fluid

  • Singh, Nishant Kumar;Sarkar, A.;Deo, Anandita;Gautam, Kirti;Rai, S.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2016
  • Weibull distribution with two parameters, shape (k) and scale (s) parameters are used to model the fatigue failure analysis due to periodic vortex shedding of the synovial fluid in knee joints. In order to determine the later parameter, a suitable statistical model is required for velocity distribution of synovial fluid flow. Hence, wide applicability of Weibull distribution in life testing and reliability analysis can be applied to describe the probability distribution of synovial fluid flow velocity. In this work, comparisons of three most widely used methods for estimating Weibull parameters are carried out; i.e. the least square estimation method (LSEM), maximum likelihood estimator (MLE) and the method of moment (MOM), to study fatigue failure of bone joint due to periodic vortex shedding of synovial fluid. The performances of these methods are compared through the analysis of computer generated synovial fluidflow velocity distribution in the physiological range. Significant values for the (k) and (s) parameters are obtained by comparing these methods. The criterions such as root mean square error (RMSE), coefficient of determination ($R^2$), maximum error between the cumulative distribution functions (CDFs) or Kolmogorov-Smirnov (K-S) and the chi square tests are used for the comparison of the suitability of these methods. The results show that maximum likelihood method performs well for most of the cases studied and hence recommended.

Estimation of Convolutional Interleaver Parameters using Linear Characteristics of Channel Codes (채널 부호의 선형성을 이용한 길쌈 인터리버의 파라미터 추정)

  • Lee, Ju-Byung;Jeong, Jeong-Hoon;Kim, Sang-Goo;Kim, Tak-Kyu;Yoon, Dong-Weon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.15-23
    • /
    • 2011
  • An interleaver rearranges a channel-encoded data in the symbol unit to spread burst errors occurred in channels into random errors. Thus, the interleaving process makes it difficult for a receiver, who does not have information of the interleaver parameters used in the transmitter, to de-interleave an unknown interleaved signal. Recently, various researches on the reconstruction of an unknown interleaved signal have been studied in many places of literature by estimating the interleaver parameters. They, however, have been mainly focused on the estimation of the block interleaver parameters required to reconstruct the de-interleaver. In this paper, as an extension of the previous researches, we estimate the convolutional interleaver parameters, e.g., the number of shift registers, a shift register depth, and a codeword length, required to de-interleave the unknown data stream, and propose the de-interleaving procedure by reconstructing the de-interleaver.

Permanent Magnet Synchronous Motor Control Algorithm Based on Stability Margin and Lyapunov Stability Analysis

  • Jie, Hongyu;Xu, Hongbing;Zheng, Yanbing;Xin, Xiaoshuai;Zheng, Gang
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1505-1514
    • /
    • 2019
  • The permanent magnet synchronous motor (PMSM) is widely used in various fields and the proportional-integral (PI) controller is popular in PMSM control systems. However, the motor parameters are usually unknown, which can lead to a complicated PI controller design and poor performance. In order to design a PI controller with good performance when the motor parameters are unknown, a control algorithm based on stability margin is proposed in this paper. First of all, based on the mathematical model of the PMSM and the least squares (LS) method, motor parameters are estimated offline. Then based on the estimation values of the motor parameters, natural angular frequency and phase margin, a PI controller is designed. Performance indices including the natural angular frequency and the phase margin are used directly to design the PI controller in this paper. Scalar functions of the d-loop and the q-loop are selected. It can be seen that the designed controller parameters satisfy Lyapunov large scale asymptotic stability theory if the natural angular frequencies of the d-loop and the q-loop are large than 0. Experimental results show that the parameter estimation method has good accuracy and the designed PI controller proposed in this paper has good static and dynamic performances.

Registration multiple range views (복수의 거리영상 간의 변환계수의 추출)

  • 정도현;윤일동;이상욱
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.2
    • /
    • pp.52-62
    • /
    • 1997
  • To reconstruct the complete 3-D shape of an object, seveal range images form different viewpoints should be merged into a single model. The process of extraction of the transformation parameters between multiple range views is calle dregistration. In this paper, we propose a new algorithm to find the transformation parameters between multiple range views. Th eproposed algorithm consists of two step: initial estimation and iteratively update the transformation. To guess the initial transformation, we modify the principal axes by considering the projection effect, due to the difference fo viewpoints. Then, the following process is iterated: in order to extract the exact transformation parameters between the range views: For every point of the common region, find the nearest point among the neighborhood of the current corresponding point whose correspondency is defined by the reverse calibration of the range finder. Then, update the transformation to satisfy the new correspondencies. In order to evaluate the performance the proposed registration algorithm, some experiments are performed on real range data, acquired by space encoding range finder. The experimental results show that the proposed initial estimation accelerate the following iterative registration step.

  • PDF