• Title/Summary/Keyword: parameters estimation

Search Result 4,064, Processing Time 0.035 seconds

Parameter Impact Applied Case-based Reasoning Cost Estimation

  • Joseph Ahn;Hyun-Soo Lee;Moonseo Park;Sae-Hyun Ji;Sooyoung Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.475-478
    • /
    • 2013
  • To carry out a one-off construction project successfully, effective and accurate early cost estimation is crucial, especially during the conceptual stage where very limited minimum information of construction project is given. As the level of accuracy of the early cost estimation has huge impacts on precise budgeting and cost management of a project, in other words, reducing the risk of a project, cost must be managed with special awareness. In an effort to improve the estimate accuracy of cost during the conceptual stage, this research introduces a Parameter Impact (PI) which can quantify weights of parameters and rank them; and PI development derived from the principle of impulse in physics is explicated. For a case study, 76 public apartment building cases in Korea are analyzed. To examine the validity of the proposed PI, a validation in terms of CBR applicability test and estimate accuracy comparisons using 10-nearest neighbor cases are carried out. The validation results support that the suggested PI can be applied in quantifying the weights of the parameters and CBR method for early cost estimation.

  • PDF

Advances in Load-Sharing Parameter Estimation for Reliability Systems (시스템 신뢰도 계산을 위한 로드쉐어링 모수 추정에 관한 고찰)

  • Hyoungtae Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.3
    • /
    • pp.31-38
    • /
    • 2024
  • This paper chronicles the evolution of load-sharing parameter estimation methodologies, with a particular focus on the significant contributions made by Kim and Kvam (2004) and Park (2012). Kim and Kvam's pioneering work underscored the inherent challenges in deriving closed-form solutions for load-share parameters, which necessitated the use of sophisticated numerical optimization techniques. Park's research, on the other hand, provided groundbreaking closed-form solutions and extended the theoretical framework to accommodate more general distributions of component lifetimes. This was achieved by incorporating EM-type methods for maximum likelihood estimation, which represented a significant advancement in the field. Unlike previous efforts, this paper zeroes in on the specific characteristics and advantages of closed-form solutions for load-share parameters within reliability systems. Much like the basic Economic Order Quantity (EOQ) model enhances the understanding of real-life inventory systems dynamics, our analysis aims to thoroughly explore the conditions under which these closed-form solutions are valid. We investigate their stability, robustness, and applicability to various types of systems. Through this comprehensive study, we aspire to provide a deep understanding of the practical implications and potential benefits of these solutions. Building on previous advancements, our research further examines the robustness of these solutions in diverse reliability contexts, aiming to shed light on their practical relevance and utility in real-world applications.

The effects of uncertainties in structural analysis

  • Pellissetti, M.F.;SchueIler, G.I.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.3
    • /
    • pp.311-330
    • /
    • 2007
  • Model-based predictions of structural behavior are negatively affected by uncertainties of various type and in various stages of the structural analysis. The present paper focusses on dynamic analysis and addresses the effects of uncertainties concerning material and geometric parameters, mainly in the context of modal analysis of large-scale structures. Given the large number of uncertain parameters arising in this case, highly scalable simulation-based methods are adopted, which can deal with possibly thousands of uncertain parameters. In order to solve the reliability problem, i.e., the estimation of very small exceedance probabilities, an advanced simulation method called Line Sampling is used. In combination with an efficient algorithm for the estimation of the most important uncertain parameters, the method provides good estimates of the failure probability and enables one to quantify the error in the estimate. Another aspect here considered is the uncertainty quantification for closely-spaced eigenfrequencies. The solution here adopted represents each eigenfrequency as a weighted superposition of the full set of eigenfrequencies. In a case study performed with the FE model of a satellite it is shown that the effects of uncertain parameters can be very different in magnitude, depending on the considered response quantity. In particular, the uncertainty in the quantities of interest (eigenfrequencies) turns out to be mainly caused by very few of the uncertain parameters, which results in sharp estimates of the failure probabilities at low computational cost.

Efficient Method for Recovering Spectral Reflectance Using Spectrum Characteristic Matrix (스펙트럼 특성행렬을 이용한 효율적인 반사 스펙트럼 복원 방법)

  • Sim, Kyudong;Park, Jong-Il
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1439-1444
    • /
    • 2015
  • Measuring spectral reflectance can be regarded as obtaining inherent color parameters, and spectral reflectance has been used in image processing. Model-based spectrum recovering, one of the method for obtaining spectral reflectance, uses ordinary camera with multiple illuminations. Conventional model-based methods allow to recover spectral reflectance efficiently by using only a few parameters, however it requires some parameters such as power spectrum of illuminations and spectrum sensitivity of camera. In this paper, we propose an enhanced model-based spectrum recovering method without pre-measured parameters: power spectrum of illuminations and spectrum sensitivity of camera. Instead of measuring each parameters, spectral reflectance can be efficiently recovered by estimating and using the spectrum characteristic matrix which contains spectrum parameters: basis function, power spectrum of illumination, and spectrum sensitivity of camera. The spectrum characteristic matrix can be easily estimated using captured images from scenes with color checker under multiple illuminations. Additionally, we suggest fast recovering method preserving positive constraint of spectrum by nonnegative basis function of spectral reflectance. Results of our method showed accurately reconstructed spectral reflectance and fast constrained estimation with unmeasured camera and illumination. As our method could be conducted conveniently, measuring spectral reflectance is expected to be widely used.

Reliability Design of the Natural frequency of a System based on the Samples of Uncertain Parameters (불확실한 인자 표본을 이용한 시스템 고유진동수의 신뢰성 설계)

  • Choi, Chan Kyu;Yoo, Hong Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.467-471
    • /
    • 2014
  • The natural frequencies of a mechanical system are determined by the system parameters such as masses and stiffness of the system. Since material irregularities and manufacturing tolerances always exist in most of practical engineering situations, the system parameters always have uncertainties. As the uncertainties of the parameters increase, the uncertainties of the system natural frequencies also increases. Then, the reliability of the system deteriorates. So, the uncertainty of the system natural frequencies should be analyzed accurately and considered in the design of the system. In order to analyze the uncertainty of the system natural frequencies employing most of existing uncertainty analysis methods, the probability distributions of the uncertain system parameters should be identified. In most practical situations, however, identification of the probability distributions is almost impossible because of limited time and cost. For that case, the reliability should be estimated based on finite samples of the system parameters. In this paper, sample based reliability estimation method employing extreme value theory was proposed. Using the proposed estimation method, sample based reliability design of the system natural frequencies was conducted.

  • PDF

Estimation of the WGR Multi-dimensional Precipitation Model Parameters using the Genetic Algorithm (유전자 알고리즘을 이용한 WGR 다차원 강우모형의 매개변수 추정)

  • Jeong, Gwang-Sik;Yu, Cheol-Sang;Kim, Jung-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.473-486
    • /
    • 2001
  • The WGR model was developed to represent meso-scale precipitation. As a conceptual model, this model shows a good link between atmospheric dynamics and statistical description of meso-scale precipitation(Waymire et al., 1984). However, as it has maximum 18 parameters along with its non-linear structure, its parameter estimation has been remained a difficult problem. There have been several cases of its parameter estimation for different fields using non-linear programming techniques(NLP), which were also difficult tasks to hamper its wide applications. In this study, we estimated the WGR model parameters of the Han river basin using the genetic algorithm(GA) and compared them to the NLP results(Yoo and Kwon, 2000). As a result of the study, we can find that the sum of square error from the GA provide more consistent parameters to the seasonal variation of rainfall. Also, we can find that the higher rainfall amount during summer season is closely related with the arrival rate of rain bands, not the rain cell intensity.

  • PDF

Automatic Estimation of Threshold Values for Change Detection of Multi-temporal Remote Sensing Images (다중시기 원격탐사 화상의 변화탐지를 위한 임계치 자동 추정)

  • 박노욱;지광훈;이광재;권병두
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.465-478
    • /
    • 2003
  • This paper presents two methods for automatic estimation of threshold values in unsupervised change detection of multi-temporal remote sensing images. The proposed methods consist of two analytical steps. The first step is to compute the parameters of a 3-component Gaussian mixture model from difference or ratio images. The second step is to determine a threshold value using Bayesian rule for minimum error. The first method which is an extended version of Bruzzone and Prieto' method (2000) is to apply an Expectation-Maximization algorithm for estimation of the parameters of the Gaussian mixture model. The second method is based on an iterative thresholding algorithm that successively employs thresholding and estimation of the model parameters. The effectiveness and applicability of the methods proposed here were illustrated by two experiments and one case study including the synthetic data sets and KOMPSAT-1 EOC images. The experiments demonstrate that the proposed methods can effectively estimate the model parameters and the threshold value determined shows the minimum overall error.

A constrained minimization-based scheme against susceptibility of drift angle identification to parameters estimation error from measurements of one floor

  • Kangqian Xu;Akira Mita;Dawei Li;Songtao Xue;Xianzhi Li
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.119-131
    • /
    • 2024
  • Drift angle is a significant index for diagnosing post-event structures. A common way to estimate this drift response is by using modal parameters identified under natural excitations. Although the modal parameters of shear structures cannot be identified accurately in the real environment, the identification error has little impact on the estimation when measurements from several floors are used. However, the estimation accuracy falls dramatically when there is only one accelerometer. This paper describes the susceptibility of single sensor identification to modelling error and simulations that preliminarily verified this characteristic. To make a robust evaluation from measurements of one floor of shear structures based on imprecisely identified parameters, a novel scheme is devised to approximately correct the mode shapes with respect to fictitious frequencies generated with a genetic algorithm; in particular, the scheme uses constrained minimization to take both the mathematical aspect and the realistic aspect of the mode shapes into account. The algorithm was validated by using a full-scale shear building. The differences between single-sensor and multiple-sensor estimations were analyzed. It was found that, as the number of accelerometers decreases, the error rises due to insufficient data and becomes very high when there is only one sensor. Moreover, when measurements for only one floor are available, the proposed method yields more precise and appropriate mode shapes, leading to a better estimation on the drift angle of the lower floors compared with a method designed for multiple sensors. As well, it is shown that the reduction in space complexity is offset by increasing the computation complexity.

Estimation of structural vector autoregressive models

  • Lutkepohl, Helmut
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.421-441
    • /
    • 2017
  • In this survey, estimation methods for structural vector autoregressive models are presented in a systematic way. Both frequentist and Bayesian methods are considered. Depending on the model setup and type of restrictions, least squares estimation, instrumental variables estimation, method-of-moments estimation and generalized method-of-moments are considered. The methods are presented in a unified framework that enables a practitioner to find the most suitable estimation method for a given model setup and set of restrictions. It is emphasized that specifying the identifying restrictions such that they are linear restrictions on the structural parameters is helpful. Examples are provided to illustrate alternative model setups, types of restrictions and the most suitable corresponding estimation methods.

Comparison of Parameter Estimation Methods in A Kappa Distribution

  • Park Jeong-Soo;Hwang Young-A
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.285-294
    • /
    • 2005
  • This paper deals with the comparison of parameter estimation methods in a 3-parameter Kappa distribution which is sometimes used in flood frequency analysis. Method of moment estimation(MME), L-moment estimation(L-ME), and maximum likelihood estimation(MLE) are applied to estimate three parameters. The performance of these methods are compared by Monte-carlo simulations. Especially for computing MME and L-ME, three dimensional nonlinear equations are simplified to one dimensional equation which is calculated by the Newton-Raphson iteration under constraint. Based on the criterion of the mean squared error, L-ME (or MME) is recommended to use for small sample size( n$\le$100) while MLE is good for large sample size.