• Title/Summary/Keyword: parameters estimation

Search Result 4,064, Processing Time 0.036 seconds

Inference for exponentiated Weibull distribution under constant stress partially accelerated life tests with multiple censored

  • Nassr, Said G.;Elharoun, Neema M.
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.131-148
    • /
    • 2019
  • Constant stress partially accelerated life tests are studied according to exponentiated Weibull distribution. Grounded on multiple censoring, the maximum likelihood estimators are determined in connection with unknown distribution parameters and accelerated factor. The confidence intervals of the unknown parameters and acceleration factor are constructed for large sample size. However, it is not possible to obtain the Bayes estimates in plain form, so we apply a Markov chain Monte Carlo method to deal with this issue, which permits us to create a credible interval of the associated parameters. Finally, based on constant stress partially accelerated life tests scheme with exponentiated Weibull distribution under multiple censoring, the illustrative example and the simulation results are used to investigate the maximum likelihood, and Bayesian estimates of the unknown parameters.

Joint synchronization and parameter estimation in OFDM signaling

  • Sara Karami;Hossein Bahramgiri
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.226-239
    • /
    • 2023
  • Challenges in cognitive radio and tactical communications include recognizing anonymously received signals and estimating parameters in a blind or semi-blind manner. In this paper, we examine this issue for orthogonal frequency division multiplexing (OFDM) signaling. There are several parameters in OFDM signaling, and the blind receiver must extract and consider the synchronization issue. We assume that the blind receiver is aware of modulation type, OFDM, and not aware of chip duration and the length of cyclic prefix. First, we present new criteria based on kurtosis to estimate these parameters and compare their performance at different levels of additive white Gaussian noise with methods based on correlation, kurtosis, maximum likelihood, and matched filter. Then, we perform synchronization and estimate the start time based on these criteria and several new criteria in two steps: fine and coarse synchronization. Finally, in a more practical setup, we present the idea of jointly estimating the mentioned parameters and the signal start time as coarse synchronization. We compare different criteria and show that one of the proposed criteria has the highest efficiency.

Real-time Aircraft Parameter Estimation using LWR

  • Song,Yongkyu;Hong, Sung-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.141.4-141
    • /
    • 2001
  • In this paper the Local Weighted Regression LWR technique is applied to the estimation of aircrcraft parameters. The method consists In improving the Local Weighted Regression LWR technique by adding a data Retention-and-Deletion RD strategy. The improvement comes with reduced computational effort since the two techniques can share their main computational procedures. The purpose of the study was to establish if the proposed algorithm could provide fast and reliable real-time estimations, with accuracy comparable to other well-known off-line identification schemes. The algorithm was tested using specific parameter estimation maneuvers and flight data of the NASA F/A-18 HARV. The results were compared with both the estimation obtained from ...

  • PDF

An Algorithm for Transformer Tap Estimation by WLAV State Estimator (가중최소절대값을 이용한 변압기 텝 추정 알고리즘)

  • Kim, Hong-Rae;Kwon, Hyung-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.279-281
    • /
    • 1999
  • This paper addresses the issues of the parameter error detection and identification in power system. The parameter error identification is carried out as part of the state estimation procedure. The weighted least absolute value(WLAV) estimation method is used for this procedure. The standard formulation of the state estimation problem is modified to include the effects of the parameter errors as well. A two step procedure for the detection and identification of faulted parameters is proposed. Supporting examples are given using IEEE 14 bus system.

  • PDF

A two-stage Kalman filter for the identification of structural parameters with unknown loads

  • He, Jia;Zhang, Xiaoxiong;Feng, Zhouquan;Chen, Zhengqing;Cao, Zhang
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.693-701
    • /
    • 2020
  • The conventional Kalman Filter (KF) provides a promising way for structural state estimation. However, the physical parameters of structural systems or models should be available for the estimation. Moreover, it is not applicable when the loadings applied to the structures are unknown. To circumvent the aforementioned limitations, a two-stage KF with unknown input approach is proposed for the simultaneous identification of structural parameters and unknown loadings. In stage 1, a modified observation equation is employed. The structural state vector is estimated by KF on the basis of structural parameters identified at the previous time-step. Then, the unknown input is identified by Least Squares Estimation (LSE). In stage 2, based on the concept of sensitivity matrix, the structural parameters are updated at the current time-step by using the estimated structural states obtained from stage 1. The effectiveness of the proposed approach is numerically validated via a five-story shearing model under random and earthquake excitations. Shaking table tests on a five-story structure are also employed to demonstrate the performance of the proposed approach. It is demonstrated from numerical and experimental results that the proposed approach can be used for the identification of parameters of structure and the external force applied to it with acceptable accuracy.

Modeling and State Observer Design of HEV Li-ion Battery (하이브리드 전기자동차용 리튬이온 배터리 모델링 및 상태 관측기 설계)

  • Kim, Ho-Gi;Heo, Sang-Jin;Kang, Gu-Bae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.360-368
    • /
    • 2008
  • A lumped parameter model of Li-ion battery in hybrid electric vehicle(HEV) is constructed and system parameters are identified by using recursive least square estimation for different C-rates, SOCs and temperatures. The system characteristics of pole and zero in the frequency domain are analyzed with the parameters obtained from different conditions. The parameterized model of a Li-ion battery indicates highly dependent of temperatures. To estimate SOC and polarization voltage, a Luenberger state observer is utilized. The P- or PI-gains of observer based on a suitable natural frequency and damping ratio is adopted for the state estimation. Satisfactory estimation accuracy of output voltage and SOC is especially obtained by a PI-gain. The feasibility of the proposed estimation method is verified through experiment under the conditions of different C-rates, SOCs and temperatures.

The State of Charge Estimation for Lithium-Polymer Battery using a PI Observer (PI 상태관측기를 이용한 리튬폴리머 배터리 SOC 추정)

  • Lee, Junwon;Jo, Jongmin;Kim, Sungsoo;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.175-181
    • /
    • 2015
  • In this study, a lithium polymer battery (LiPB) is simply expressed by a primary RC equivalent model. The PI state observer is designed in Matlab/Simulink. The non-linear relationship with the OCV-SOC is represented to be linearized with 0.1 pu intervals by using battery parameters obtained by constant-current pulse discharge. A state equation is configured based on battery parameters. The state equation, which applied Peukert's law, can estimate SOC more accurately. SOC estimation capability was analyzed by utilizing reduced Federal Test Procedure (FTP-72) current profile and using a bi-directional DC-DC converter at temperature ($25^{\circ}C$). The PI state observer, which is designed in this study, indicated a SOC estimation error rate of ${\pm}2%$ in any of the initial SOC states. The PI state observer confirms a strong SOC estimation performance despite disturbances, such as modeling errors and noise.

Damage Estimation Method for Monopile Support Structure of Offshore Wind Turbine (모노파일 형식 해상풍력발전기 지지구조물의 손상추정기법)

  • Kim, Sang-Ryul;Lee, Jong-Won;Kim, Bong-Ki;Lee, Jun-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.667-675
    • /
    • 2012
  • A damage estimation method for support structure of offshore wind turbine using modal parameters is presented for effective structural health monitoring. Natural frequencies and mode shapes for a support structure with monopile of an offshore wind turbine were calculated considering soil condition and added mass. A neural network was learned based on training patterns generated by the changes of natural frequency and mode shape due to various damages. Natural frequencies and mode shapes for 10 prospective damage cases were input to the trained neural network for damage estimation. The identified damage locations and severities agreed reasonably well with the accurate damages. Multi-damage cases could also be successfully estimated. Enhancement of estimation result using another parameters as input to neural network will be carried out by further study. Proposed method could be applied to other type of support structure of offshore wind turbine for structural health monitoring.

A Study on Change of Logistics in the region of Seoul, Incheon, Kyunggi (물류예측모형에 관한 연구 -수도권 물동량 예측을 중심으로-)

  • Roh Kyung-Ho
    • Management & Information Systems Review
    • /
    • v.7
    • /
    • pp.427-450
    • /
    • 2001
  • This research suggests the estimation methodology of Logistics. This paper elucidates the main problems associated with estimation in the regression model. We review the methods for estimating the parameters in the model and introduce a modified procedure in which all models are fitted and combined to construct a combination of estimates. The resulting estimators are found to be as efficient as the maximum likelihood (ML) estimators in various cases. Our method requires more computations but has an advantage for large data sets. Also, it enables to detect particular features in the data structure. Examples of real data are used to illustrate the properties of the estimators. The backgrounds of estimation of logistic regression model is the increasing logistic environment importance today. In the first phase, we conduct an exploratory study to discuss 9 independent variables. In the second phase, we try to find the fittest logistic regression model. In the third phase, we calculate the logistic estimation using logistic regression model. The parameters of logistic regression model were estimated using ordinary least squares regression. The standard assumptions of OLS estimation were tested. The calculated value of the F-statistics for the logistic regression model is significant at the 5% level. The logistic regression model also explains a significant amount of variance in the dependent variable. The parameter estimates of the logistic regression model with t-statistics in parentheses are presented in Table. The object of this paper is to find the best logistic regression model to estimate the comparative accurate logistics.

  • PDF

Virtual Environment Modeling for Battery Management System

  • Piao, Chang-Hao;Yu, Qi-Fan;Duan, Chong-Xi;Su, Ling;Zhang, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1729-1738
    • /
    • 2014
  • The offline verification of state of charge estimation, power estimation, fault diagnosis and emergency control of battery management system (BMS) is one of the key technologies in the field of electric vehicle battery system. It is difficult to test and verify the battery management system software in the early stage, especially for algorithms such as system state estimation, emergency control and so on. This article carried out the virtual environment modeling for verification of battery management system. According to the input/output parameters of battery management system, virtual environment is determined to run the battery management system. With the integration of the developed BMS model and the external model, the virtual environment model has been established for battery management system in the vehicle's working environment. Through the virtual environment model, the effectiveness of software algorithm of BMS was verified, such as battery state parameters estimation, power estimation, fault diagnosis, charge and discharge management, etc.