• Title/Summary/Keyword: parameters back analysis

Search Result 350, Processing Time 0.028 seconds

A Proposal for Damage Index of Steel Members under Cyclic Loading (반복하중하에서의 강부재에 대한 손상지수 제안)

  • Park, Yeon Soo;Kang, Dae Hung;Oh, Jung Tae;Choi, Dong Ho;Oh, Back Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.613-625
    • /
    • 2002
  • This paper aimed to investigate the damage process of steel parts experiencing failure under strong repeated loading. Likewise, a damage index using various factors related to the damage was proposed. An analysis method for evaluating the damage state was also developed. The damage assessment method focused on the local strain history at the cross-section of the heaviest concentration of deformation. Cantilever-type steel parts were analyzed under uniaxial load combined with a constant axial load, considering horizontal displacement history, Loading patterns and steel types were considered as the main parameters in analyzing the models. The effects of the parameters on the failure modes, deformation capacity, and damage process as seen from the analysis results were also discussed. Each failure process was compared as steel types. In addition, the failure of steel parts under strong repeated loading was determined according to loading. Results revealed that the state of the failure is closely related to the local plastic strain.

Prediction of rock slope failure using multiple ML algorithms

  • Bowen Liu;Zhenwei Wang;Sabih Hashim Muhodir;Abed Alanazi;Shtwai Alsubai;Abdullah Alqahtani
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.489-509
    • /
    • 2024
  • Slope stability analysis and prediction are of critical importance to geotechnical engineers, given the severe consequences associated with slope failure. This research endeavors to forecast the factor of safety (FOS) for slopes through the implementation of six distinct ML techniques, including back propagation neural networks (BPNN), feed-forward neural networks (FFNN), Takagi-Sugeno fuzzy system (TSF), gene expression programming (GEP), and least-square support vector machine (Ls-SVM). 344 slope cases were analyzed, incorporating a variety of geometric and shear strength parameters measured through the PLAXIS software alongside several loss functions to assess the models' performance. The findings demonstrated that all models produced satisfactory results, with BPNN and GEP models proving to be the most precise, achieving an R2 of 0.86 each and MAE and MAPE rates of 0.00012 and 0.00002 and 0.005 and 0.004, respectively. A Pearson correlation and residuals statistical analysis were carried out to examine the importance of each factor in the prediction, revealing that all considered geomechanical features are significantly relevant to slope stability. However, the parameters of friction angle and slope height were found to be the most and least significant, respectively. In addition, to aid in the FOS computation for engineering challenges, a graphical user interface (GUI) for the ML-based techniques was created.

Analysis of the Chip Shape in Turing (I) -Analysis of the Chip Flow Angle- (선삭가공의 칩형상 해석 (I) -칩흐름각 해석-)

  • 이영문;최수준;우덕진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.139-144
    • /
    • 1991
  • Chip flow angle is one of the important factors to be determined for the scheme of Chip Control. Up to now, however, a dependable way to predict the chip flow angle in practical cutting has not been established satisfactorily. In this paper a rather simple theoretical prediction of chip flow angle is tried based on some already widely confirmed hypotheses. The developed equation of chip flow angle contains the parameters of depth of cut d, feed rate f, nose radius $r_{n}$ side cutting edge angle $C_{s}$, side rake angle .alpha.$_{s}$ and back rake angle .alpha.$_{b}$. Theoretical results of chip flow angle given by this study bas been shown in a good agreement with experimental ones.s.s.s.s.

A DQ nonlinear bending analysis of skew composite thin plates

  • Malekzadeh, P.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.161-180
    • /
    • 2007
  • A first endeavor is made to exploit the differential quadrature method (DQM) as a simple, accurate, and computationally efficient numerical tool for the large deformation analysis of thin laminated composite skew plates, which has very strong singularity at the obtuse vertex. The geometrical nonlinearity is modeled by using Green's strain and von Karman assumption. A recently developed DQ methodology is used to exactly implement the multiple boundary conditions at the edges of skew plates, which is a major draw back of conventional DQM. Using oblique coordinate system and the DQ methodology, a mapping-DQ discretization rule is developed to simultaneously transform and discretize the equilibrium equations and the related boundary conditions. The effects of skew angle, aspect ratio and different types of boundary conditions on the convergence and accuracy of the presented method are studied. Comparing the results with the available results from other numerical or analytical methods, it is shown that accurate results are obtained even when using only small number of grid points. Finally, numerical results for large deflection behavior of antisymmetric cross ply skew plates with different geometrical parameters and boundary conditions are presented.

Undrained Behaviour of Normally Consolidated Clay Foundation Using Single-Hardening Constitutive Model (단일황복면 구성모델을 이용한 정규압밀 점토지반의 비배수 거동해석)

  • Jeong, Jin Seob;Lee, Kang Ill;Park, Byung Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1229-1241
    • /
    • 1994
  • This study aims at investigating the undrained behavior of the normally consolidated clay foundation using single hardening constitutive model based on elasticity and plasticity theories. The specimen employed was sampled at Mooan near the down stream of Young San river and remolded into consolidation apparatus. 11 soil parameters for the model was determined from simple tests such as isotropic compression and consolidation undrained triaxial compression tests. FEM program to predict the undrained behavior of the foundation was developed and back analysis was performed to verify prediction ability of the FEM program. Finally plate load test on the 2-dimensional model foundation was carried out in order to compare numerical analysis and observed values on the foundation.

  • PDF

Deformation prediction by a feed forward artificial neural network during mouse embryo micromanipulation

  • Abbasi, Ali A.;Vossoughi, G.R.;Ahmadian, M.T.
    • Animal cells and systems
    • /
    • v.16 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models have been implemented. In the first NN model dimple depth (w), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were used as inputs of the model while indentation force (f) was considered as output. In the second NN model, indentation force (f), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were considered as inputs of the model and dimple depth was predicted as the output of the model. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. Experimental data deduced by Fl$\ddot{u}$ckiger (2004) were collected to obtain training and test data for the NN. The results of these investigations show that the correlation values of the test and training data sets are between 0.9988 and 1.0000, and are in good agreement with the experimental observations.

Practical Model for Predicting Beta Transus Temperature of Titanium Alloys

  • Reddy, N.S.;Choi, Hyun Ji;Young, Hur Bo
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.381-387
    • /
    • 2014
  • The ${\beta}$-transus temperature in titanium alloys plays an important role in the design of thermo-mechanical treatments. It primarily depends on the chemical composition of the alloy and the relationship between them is non-linear and complex. Considering these relationships is difficult using mathematical equations. A feed-forward neural-network model with a back-propagation algorithm was developed to simulate the relationship between the ${\beta}$-transus temperature of titanium alloys, and the alloying elements. The input parameters to the model consisted of the nine alloying elements (i.e., Al, Cr, Fe, Mo, Sn, Si, V, Zr, and O), whereas the model output is the ${\beta}$-transus temperature. The model developed was then used to predict the ${\beta}$-transus temperature for different elemental combinations. Sensitivity analysis was performed on a trained neural-network model to study the effect of alloying elements on the ${\beta}$-transus temperature, keeping other elements constant. Very good performance of the model was achieved with previously unseen experimental data. Some explanation of the predicted results from the metallurgical point of view is given. The graphical-user-interface developed for the model should be very useful to researchers and in industry for designing the thermo-mechanical treatment of titanium alloys.

Optimization Technique for Parameter Estimation used in 2-Dimensional Modelling of Nonlinear Consolidation Analysis of Soft Deposits (2차원 모델화된 연약지반의 비선형 압밀해석시 이용되는 모델변수 추정을 위한 최적화기법)

  • 김윤태;이승래
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.47-58
    • /
    • 1997
  • The predicted consolidation behavior of in-situ soft clay is quite different from the meas ureal one mainly due to the approximate numerical modelling techniques as well as the uncertainties involved in soil properties and geological configurations. In order to improve the prediction, this paper takes the following pinto consideration : an optimization technique should be adopted for characterizing the in-situ properties from measurements and also an equivalent and efficient model be considered to incorporate the actual 3-D effects. The soil parameters used be the modified Camflay model, which have an effect on the process of consolidation, were back-analyzed by BFGS scheme on the basis of settlements and pore pressures measured in real sites. The optimization technique was implemented in a general consolidation analysis program SPINED. By using the program, one may be able to appropriately analyze the timetependent consolidation behavior of soft deposits.

  • PDF

Compound damping cable system for vibration control of high-rise structures

  • Yu, Jianda;Feng, Zhouquan;Zhang, Xiangqi;Sun, Hongxin;Peng, Jian
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.641-652
    • /
    • 2022
  • High-rise structures prone to large vibrations under the action of strong winds, resulting in fatigue damage of the structural components and the foundation. A novel compound damping cable system (CDCS) is proposed to suppress the excessive vibrations. CDCS uses tailored double cable system with increased tensile stiffness as the connecting device, and makes use of the relative motion between the high-rise structure and the ground to drive the damper to move back-and-forth, dissipating the vibration mechanical energy of the high-rise structure so as to decaying the excessive vibration. Firstly, a third-order differential equation for the free vibration of high-rise structure with CDCS is established, and its closed form solution is obtained by the root formulas of cubic equation (Shengjin's formulas). Secondly, the analytical solution is validated by a laboratory model experiment. Thirdly, parametric analysis is conducted to investigate how the parameters affect the vibration control performance. Finally, the dynamic responses of the high-rise structure with CDCS under harmonic and stochastic excitations are calculated and its vibration mitigation performance is further evaluated. The results show that the CDCS can provide a large equivalent additional damping ratio for the vibrating structures, thus suppressing the excessive vibration effectively. It is anticipated that the CDCS can be used as a good alternative energy dissipation system for vibration control of high-rise structures.

Probabilistic analysis of anisotropic rock slope with reinforcement measures

  • Zoran Berisavljevic;Dusan Berisavljevic;Milos Marjanovic;Svetlana Melentijevic
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-301
    • /
    • 2023
  • During the construction of E75 highway through Grdelica gorge in Serbia, a major failure occurred in the zone of reinforced rock slope. Excavation was performed in highly anisotropic Paleozoic schist rock formation. The reinforcement consisted of the two rows of micropile wall with pre-stressed anchors. Forces in anchors were monitored with load cells while benchmarks were installed for superficial displacement measurements. The aim of the study is to investigate possible causes of instability considering different probability distributions of the strength of discontinuities and anchor bond strength by applying different optimization techniques for finding the critical failure surface. Even though the deterministic safety factor value is close to unity, the probability of failure is governed by variability of shear strength of anisotropic planes and optimization method used for locating the critical sliding surface. The Cuckoo search technique produces higher failure probabilities compared to the others. Depending on the assigned statistical distribution of input parameters, various performance functions of the factor of safety are obtained. The probability of failure is insensitive to the variation of bond strength. Different sampling techniques should yield similar results considering that the sufficient number of safety factor evaluations is chosen to achieve converged solution.