• Title/Summary/Keyword: parameters back analysis

Search Result 350, Processing Time 0.023 seconds

Coupling relevance vector machine and response surface for geomechanical parameters identification

  • Zhao, Hongbo;Ru, Zhongliang;Li, Shaojun
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1207-1217
    • /
    • 2018
  • Geomechanics parameters are critical to numerical simulation, stability analysis, design and construction of geotechnical engineering. Due to the limitations of laboratory and in situ experiments, back analysis is widely used in geomechancis and geotechnical engineering. In this study, a hybrid back analysis method, that coupling numerical simulation, response surface (RS) and relevance vector machine (RVM), was proposed and applied to identify geomechanics parameters from hydraulic fracturing. RVM was adapted to approximate complex functional relationships between geomechanics parameters and borehole pressure through coupling with response surface method and numerical method. Artificial bee colony (ABC) algorithm was used to search the geomechanics parameters as optimal method in back analysis. The proposed method was verified by a numerical example. Based on the geomechanics parameters identified by hybrid back analysis, the computed borehole pressure agreed closely with the monitored borehole pressure. It showed that RVM presented well the relationship between geomechanics parameters and borehole pressure, and the proposed method can characterized the geomechanics parameters reasonably. Further, the parameters of hybrid back analysis were analyzed and discussed. It showed that the hybrid back analysis is feasible, effective, robust and has a good global searching performance. The proposed method provides a significant way to identify geomechanics parameters from hydraulic fracturing.

A Study on the Characteristics of Gait in Patients with Chronic Low Back Pain (만성요통환자의 보행특성에 관한 연구)

  • Kim, Kyoung;Ko, Joo-Yeon;Lee, Sung-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.2
    • /
    • pp.79-85
    • /
    • 2009
  • Purpose: This study examined the characteristics of gait in patients with chronic low back pain. Methods: The subjects were out-patients suffering from chronic low back pain at the department of physical therapy, B hospital in Seoul. Gait analysis was performed by dividing the subjects into two groups. The study and control group comprised 15 chronic low back pain patients and 14 healthy people, respectively. Gait analysis was performed using a VICON 512 Motion Analysis System to obtain the spatio-temporal and kinematic parameters. Results: First, there was a significant difference in the spatio-temporal parameters between the two groups (p<0.05). Second, the study group showed significant differences in the kinematic parameters during the stance phase (p<0.05). Third, there were significant differences in kinematic parameters in the study group during the swing phase (p<0.05). Conclusion: The gait pattern of patients with chronic low back pain is characterized by more rigid patterns. Compared to the control group, there was a decrease in the spatio-temporal parameters and kinematic parameters in patients with chronic low back pain. These findings are expected to play a role as basic data and to form a rehabilitation program for low back pain patients.

  • PDF

Back Analysis of the Measured Displacements by the Coupled Method of Finite Elements-Boundary Elements in Tunnel (유한요소-경계요소 조합에 의한 터널 계측결과의 역해석)

  • 김문겸;장점범
    • Tunnel and Underground Space
    • /
    • v.5 no.3
    • /
    • pp.205-213
    • /
    • 1995
  • In order to construct underground structural systems safely and economically, exact identification of the system parameters and accurate analysis of the system behaviors are required. Therefore, necessity of back analysis which is able to identify material properties of underground structural systems is increased. In this study a back analysis program which can identify the system parameters is developed using the direct method to be combined with the forward analysis program. Results of the back analysis program show good agreement with that of Gens et al. Sensitivity of the accuracy and convergency of the back analysis program on the number of measuring points is investigated. Comparison between the results of the back analysis with measurement data and the obtained material properties from the field tests shows good agreement for the real construction site.

  • PDF

Prediction of the long-term deformation of high rockfill geostructures using a hybrid back-analysis method

  • Ming Xu;Dehai Jin
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.83-97
    • /
    • 2024
  • It is important to make reasonable prediction about the long-term deformation of high rockfill geostructures. However, the deformation is usually underestimated using the rockfill parameters obtained from laboratory tests due to different size effects, which make it necessary to identify parameters from in-situ monitoring data. This paper proposes a novel hybrid back-analysis method with a modified objective function defined for the time-dependent back-analysis problem. The method consists of two stages. In the first stage, an improved weighted average method is proposed to quickly narrow the search region; while in the second stage, an adaptive response surface method is proposed to iteratively search for the satisfactory solution, with a technique that can adaptively consider the translation, contraction or expansion of the exploration region. The accuracy and computational efficiency of the proposed hybrid back-analysis method is demonstrated by back-analyzing the long-term deformation of two high embankments constructed for airport runways, with the rockfills being modeled by a rheological model considering the influence of stress states on the creep behavior.

The Application of Genetic Algorithms to Estimate the Geotechnical Parameters of Tunnels (터널의 지반계수 추정에 대한 Genetic Algorithms의 적용)

  • 현기환;김선명;윤지선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.125-132
    • /
    • 2000
  • This study presents the application of genetic algorithms(GA) to the back analysis of tunnels. GA based on the theory of natural evolution, and have been evaluated very effective for their robust performances, particularly for optimizing structure problems. In the back analysis method, the selection of initial value and uncertainty of field measurements influence significantly on the analysis result. GA can improve this problems through a probabilistic approach. Besides, this technique have two other advantages over the back analysis. One is that it is not significantly affected by the form of problems. Another one is that it can consider two known parameter simultaneously. The propriety of this study is verified as the comparison in the same condition of the back analysis(Gens et al, 1987). In this study, it was performed to estimated the geotechnical parameters in the case of weak rock mass at the Kyung Bu Express railway tunnel. GA have been shown for effective application to a geotechnical engineering.

  • PDF

Coupling numerical modeling and machine-learning for back analysis of cantilever retaining wall failure

  • Amichai Mitelman;Gili Lifshitz Sherzer
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.307-314
    • /
    • 2023
  • In this paper we back-analyze a failure event of a 9 m high concrete cantilever wall subjected to earth loading. Granular soil was deposited into the space between the wall and a nearby rock slope. The wall segments were not designed to carry lateral earth loading and collapsed due to excessive bending. As many geotechnical programs rely on the Mohr-Coulomb (MC) criterion for elastoplastic analysis, it is useful to apply this failure criterion to the concrete material. Accordingly, the back-analysis is aimed to search for the suitable MC parameters of the concrete. For this study, we propose a methodology for accelerating the back-analysis task by automating the numerical modeling procedure and applying a machine-learning (ML) analysis on FE model results. Through this analysis it is found that the residual cohesion and friction angle have a highly significant impact on model results. Compared to traditional back-analysis studies where good agreement between model and reality are deemed successful based on a limited number of models, the current ML analysis demonstrate that a range of possible combinations of parameters can yield similar results. The proposed methodology can be modified for similar calibration and back-analysis tasks.

A Study on the Behavior Prediction of Underground Structures by Back Analysis (역해석에 의한 지하구조체의 거동예측에 관한 연구)

  • 장정범;김문겸
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.139-145
    • /
    • 1998
  • The reliable estimation of the system parameters and the accurate prediction of the system behavior are important to design underground structures safely and economically. Especially, the elastic modulus and the in-situ stresses are very important parameters in predicting the behavior of the underground structure. Therefore, the back analysis using the field measurement data is developed to determine accurately the elastic modulus and the in-situ stresses of the underground structural system in this study. A back analysis using the combined finite and boundary element is developed. It can consider the far field boundary condition and is efficient in computation. In this study, a back analysis is performed to predict behaviors of underground structures for the real construction site. The comparison between the results of the back analysis with field measurement data and the obtained material properties from the field test shows good agreement for the real construction site.

  • PDF

Development of a back analysis program for reasonable derivation of tunnel design parameters (합리적인 터널설계정수 산정을 위한 역해석 프로그램 개발)

  • Kim, Young-Joon;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.357-373
    • /
    • 2013
  • In this paper, a back analysis program for analyzing the behavior of tunnel-ground system and evaluating the material properties and tunnel design parameters was developed. This program was designed to be able to implement the back analysis of underground structure by combination of using FLAC and optimized algorithm as direct method. In particular, Rosenbrock method which is able to do direct search without obtaining differential coefficient was adopted for the back analysis algorithm among optimization methods. This back analysis program was applied to the site to evaluate the design parameters. The back analysis was carried out using field measurement results from 5 sites. In the course of back analysis, nonlinear regression analysis was carried out to identify the optimum function of the measured ground displacement. Exponential function and fractional function were used for the regression analysis and total displacement calculated by optimum function was used as the back analysis input data. As a result, displacement recalculated through the back analysis using measured displacement of the structure showed 4.5% of error factor comparing to the measured data. Hence, the program developed in this study proved to be effectively applicable to tunnel analysis.

Back Analysis of Tunnel for multi-step Construction (시공 단계를 고려한 터널의 역해석에 관한 연구)

  • 김선명;윤지선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.479-484
    • /
    • 2000
  • The reliable estimation of the system parameters and the accurate prediction of the system behavior are important to design tunnel safely and economically. Therefore, the back analysis using the field measurements data is useful to evaluate the geotechnical parameter for tunnel. In the back analysis method, the selection of initial value and uncertainty of field measurements influence significantly on the analysis result. In this paper, to overcome uncertainty of field measurements, we performed the back analysis using the displacement data gained at each step of excavation and support.

  • PDF

Coupling Analysis and Back Analysis for Soil Stress - Deformation - and Seepage - Deformation Analysis by Back Analysis Method (지반응력변형과 지하수침투 해석에 대한 연성해석 및 역해석 -역해석기법을 이용한 지반변형 해석-)

  • 권호진;변광욱
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.21-30
    • /
    • 1993
  • To know the importance of soil paramters which are used to estimate the deformation and porepressure of soil, the sensitivity for soil parameters in elastic analysis is analyzed. Using the consolidation teat results of several cohesive soils, soil parameters are estimated by back analysis method, and from the parameters the deformations and porepressures of the soil are estimated by elastic analysis, In elastic analysis for soil-deformation and porepressure, the sensitivity for the Young's modulus is large, and the esimation of Young's modulus is more important in pro- portion to the size of stress. Using the measured results during initial short period in small stress, the soil parameters can be correctly estimated by back analysis method. To decrease the iteration number in back analysis and to get the better paramters, the initial measurements in more nodes are required and the more accurate initial measurements are required.

  • PDF